Singular Perturbations and Operators in Rigged Hilbert Spaces

被引:0
|
作者
Salvatore di Bella
Camillo Trapani
机构
[1] Università di Palermo,Dipartimento di Matematica e Informatica
来源
关键词
Regular operators; singular operators; rigged Hilbert spaces; 47L60; 47A70;
D O I
暂无
中图分类号
学科分类号
摘要
A notion of regularity and singularity for a special class of operators acting in a rigged Hilbert space D⊂H⊂D×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{D} \subset \mathcal{H}\subset \mathcal{D}^\times}$$\end{document} is proposed and it is shown that each operator decomposes into a sum of a regular and a singular part. This property is strictly related to the corresponding notion for sesquilinear forms. A particular attention is devoted to those operators that are neither regular nor singular, pointing out that a part of them can be seen as perturbation of a self-adjoint operator on H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{H}}$$\end{document}. Some properties for such operators are derived and some examples are discussed.
引用
收藏
页码:2011 / 2024
页数:13
相关论文
共 50 条