Thermal Entanglement in the Quantum XXZ Model in Triangular and Bilayer Honeycomb Lattices

被引:0
|
作者
L. S. Lima
机构
[1] Federal Center for Technological Education of Minas Gerais,Department of Physics
来源
关键词
Thermal entanglement; Phase transition; Frustrated Heisenberg model;
D O I
暂无
中图分类号
学科分类号
摘要
Thermal entanglement is studied in the frustrated two-dimensional Heisenberg model in triangular and honeycomb lattices employing linear spin waves. Our results display a strong effect of the coupling parameters of next-nearest neighbors interaction α=J′/J\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha =J'/J$$\end{document} on entanglement at T→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T\rightarrow 0$$\end{document} , where the spin Hall conductivity is nonzero for a value of external field H. We employ linear spin waves to investigate the entanglement with T and next-nearest neighbor interaction J′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J'$$\end{document}. For the bilayer honeycomb lattice, we analyze the entanglement as a function of inter-chain coupling J⊥\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J^{\perp }$$\end{document}, and in this case we find that the entanglement tends to zero at T=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T=0$$\end{document}, where it decreases with J⊥\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J^{\perp }$$\end{document} for higher temperatures.
引用
收藏
页码:241 / 251
页数:10
相关论文
共 50 条
  • [1] Thermal Entanglement in the Quantum XXZ Model in Triangular and Bilayer Honeycomb Lattices
    Lima, L. S.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2020, 198 (5-6) : 241 - 251
  • [2] Dirac quantum walks on triangular and honeycomb lattices
    Jay, Gareth
    Debbasch, Fabrice
    Wang, J. B.
    PHYSICAL REVIEW A, 2019, 99 (03)
  • [3] Thermal entanglement in the mixed three-spin XXZ Heisenberg model on a triangular cell
    Seyit Deniz Han
    Ekrem Aydiner
    Chinese Physics B, 2014, 23 (05) : 77 - 83
  • [4] QUANTUM MAGNETS ON THE HONEYCOMB AND TRIANGULAR LATTICES AT T = 0
    OITMAA, J
    HAMER, CJ
    ZHENG, WH
    PHYSICAL REVIEW B, 1992, 45 (17): : 9834 - 9841
  • [5] Dirac equation as a quantum walk over the honeycomb and triangular lattices
    Arrighi, Pablo
    Di Molfetta, Giuseppe
    Marquez-Martin, Ivan
    Perez, Armando
    PHYSICAL REVIEW A, 2018, 97 (06)
  • [6] Explicit solutions for a nonlinear model on the honeycomb and triangular lattices
    V. E. Vekslerchik
    Journal of Nonlinear Mathematical Physics, 2016, 23 : 399 - 422
  • [7] Explicit solutions for a nonlinear model on the honeycomb and triangular lattices
    Vekslerchik, V. E.
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2016, 23 (03) : 399 - 422
  • [8] Quantum Phase Transition and Local Entanglement in Extended Hubbard Model on Anisotropic Triangular Lattices
    Gao, Ji-Ming
    Tang, Rong-An
    Zhang, Zheng-Mei
    Xue, Ju-Kui
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2016, 66 (05) : 555 - 562
  • [9] Quantum Phase Transition and Local Entanglement in Extended Hubbard Model on Anisotropic Triangular Lattices
    高吉明
    唐荣安
    张正梅
    薛具奎
    Communications in Theoretical Physics, 2016, 66 (11) : 555 - 562
  • [10] Entanglement in quantum computers described by the XXZ model with defects
    Santos, LF
    PHYSICAL REVIEW A, 2003, 67 (06):