Tangential varieties of Segre–Veronese varieties

被引:0
|
作者
Luke Oeding
Claudiu Raicu
机构
[1] University of California,Department of Mathematics
[2] Princeton University,Department of Mathematics
[3] Institute of Mathematics “Simion Stoilow” of the Romanian Academy,undefined
[4] Department of Mathematics and Statistics Auburn University,undefined
来源
Collectanea Mathematica | 2014年 / 65卷
关键词
Tangential varieties; Segre varieties; Veronese varieties; 14L30; 15A69; 15A72;
D O I
暂无
中图分类号
学科分类号
摘要
We determine the minimal generators of the ideal of the tangential variety of a Segre–Veronese variety, as well as the decomposition into irreducible GL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${GL}$$\end{document}-representations of its homogeneous coordinate ring. In the special case of a Segre variety, our results confirm a conjecture of Landsberg and Weyman.
引用
收藏
页码:303 / 330
页数:27
相关论文
共 50 条