Large-scale GWAS of food liking reveals genetic determinants and genetic correlations with distinct neurophysiological traits

被引:0
|
作者
Sebastian May-Wilson
Nana Matoba
Kaitlin H. Wade
Jouke-Jan Hottenga
Maria Pina Concas
Massimo Mangino
Eryk J. Grzeszkowiak
Cristina Menni
Paolo Gasparini
Nicholas J. Timpson
Maria G. Veldhuizen
Eco de Geus
James F. Wilson
Nicola Pirastu
机构
[1] University of Edinburgh,Centre for Global Health Research, Usher Institute
[2] University of North Carolina at Chapel Hill,Department of Genetics
[3] University of North Carolina at Chapel Hill,UNC Neuroscience Center
[4] University of Bristol,Population Health Sciences, Bristol Medical School
[5] Medical Research Council (MRC) Integrative Epidemiology Unit (IEU) at the University of Bristol,Dept of Biological Psychology, FGB
[6] Vrije Universiteit Amsterdam,Department of Twin Research and Genetic Epidemiology
[7] Institute for Maternal and Child Health—IRCCS,Department of Medicine, Surgery and Health Sciences
[8] Burlo Garofolo,Department of Anatomy, Faculty of Medicine
[9] King’s College London,MRC Human Genetics Unit, Institute of Genetics and Cancer
[10] NIHR Biomedical Research Centre at Guy’s and St Thomas’ Foundation Trust,undefined
[11] University of Trieste,undefined
[12] Mersin University,undefined
[13] Amsterdam Public Health research institute,undefined
[14] University of Edinburgh,undefined
[15] Human Technopole,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We present the results of a GWAS of food liking conducted on 161,625 participants from the UK-Biobank. Liking was assessed over 139 specific foods using a 9-point scale. Genetic correlations coupled with structural equation modelling identified a multi-level hierarchical map of food-liking with three main dimensions: “Highly-palatable”, “Acquired” and “Low-caloric”. The Highly-palatable dimension is genetically uncorrelated from the other two, suggesting that independent processes underlie liking high reward foods. This is confirmed by genetic correlations with MRI brain traits which show with distinct associations. Comparison with the corresponding food consumption traits shows a high genetic correlation, while liking exhibits twice the heritability. GWAS analysis identified 1,401 significant food-liking associations which showed substantial agreement in the direction of effects with 11 independent cohorts. In conclusion, we created a comprehensive map of the genetic determinants and associated neurophysiological factors of food-liking.
引用
收藏
相关论文
共 50 条
  • [1] Large-scale GWAS of food liking reveals genetic determinants and genetic correlations with distinct neurophysiological traits
    May-Wilson, Sebastian
    Matoba, Nana
    Wade, Kaitlin H.
    Hottenga, Jouke-Jan
    Concas, Maria Pina
    Mangino, Massimo
    Grzeszkowiak, Eryk J.
    Menni, Cristina
    Gasparini, Paolo
    Timpson, Nicholas J.
    Veldhuizen, Maria G.
    de Geus, Eco
    Wilson, James F.
    Pirastu, Nicola
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [2] Large-scale GWAS reveals insights into the genetic architecture of same-sex sexual behavior
    Ganna, Andrea
    Verweij, Karin J. H.
    Nivard, Michel G.
    Maier, Robert
    Wedow, Robbee
    Busch, Alexander S.
    Abdellaoui, Abdel
    Guo, Shengru
    Sathirapongsasuti, J. Fah
    Lichtenstein, Paul
    Lundstrom, Sebastian
    Langstrom, Niklas
    Auton, Adam
    Harris, Kathleen Mullan
    Beecham, Gary W.
    Martin, Eden R.
    Sanders, Alan R.
    Perry, John R. B.
    Neale, Benjamin M.
    Zietsch, Brendan P.
    Agee, M.
    Alipanahi, B.
    Auton, A.
    Bell, R. K.
    Bryc, K.
    Elson, S. L.
    Fontanillas, P.
    Furlotte, N. A.
    Hicks, B.
    Huber, K. E.
    Jewett, E. M.
    Jiang, Y.
    Kleinman, A.
    Lin, K. -H.
    Litterman, N. K.
    McCreight, J. C.
    McIntyre, M. H.
    McManus, K. F.
    Mountain, J. L.
    Noblin, E. S.
    Northover, C. A. M.
    Pitts, S. J.
    Poznik, G. D.
    Shastri, A. J.
    Shelton, J. F.
    Shringarpure, S.
    Tian, C.
    Tung, J. Y.
    Vacic, V.
    Wang, X.
    SCIENCE, 2019, 365 (6456) : 882 - +
  • [3] Large-scale GWAS in sorghum reveals common genetic control of grain size among cereals
    Tao, Yongfu
    Zhao, Xianrong
    Wang, Xuemin
    Hathorn, Adrian
    Hunt, Colleen
    Cruickshank, Alan W.
    van Oosterom, Erik J.
    Godwin, Ian D.
    Mace, Emma S.
    Jordan, David R.
    PLANT BIOTECHNOLOGY JOURNAL, 2020, 18 (04) : 1093 - 1105
  • [4] Large-scale GWAS reveals genetic architecture of brain white matter microstructure and genetic overlap with cognitive and mental health traits (n=17,706)
    Zhao, Bingxin
    Zhang, Jingwen
    Ibrahim, Joseph G.
    Luo, Tianyou
    Santelli, Rebecca C.
    Li, Yun
    Li, Tengfei
    Shan, Yue
    Zhu, Ziliang
    Zhou, Fan
    Liao, Huiling
    Nichols, Thomas E.
    Zhu, Hongtu
    MOLECULAR PSYCHIATRY, 2021, 26 (08) : 3943 - 3955
  • [5] Large-scale GWAS reveals genetic architecture of brain white matter microstructure and genetic overlap with cognitive and mental health traits (n = 17,706)
    Bingxin Zhao
    Jingwen Zhang
    Joseph G. Ibrahim
    Tianyou Luo
    Rebecca C. Santelli
    Yun Li
    Tengfei Li
    Yue Shan
    Ziliang Zhu
    Fan Zhou
    Huiling Liao
    Thomas E. Nichols
    Hongtu Zhu
    Molecular Psychiatry, 2021, 26 : 3943 - 3955
  • [6] Large-scale genetic investigation reveals genetic liability to multiple complex traits influencing a higher risk of ADHD
    Garcia-Marin, Luis M.
    Campos, Adrian, I
    Cuellar-Partida, Gabriel
    Medland, Sarah E.
    Kollins, Scott H.
    Renteria, Miguel E.
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [7] Large-scale genetic investigation reveals genetic liability to multiple complex traits influencing a higher risk of ADHD
    Luis M. García-Marín
    Adrián I. Campos
    Gabriel Cuéllar-Partida
    Sarah E. Medland
    Scott H. Kollins
    Miguel E. Rentería
    Scientific Reports, 11
  • [8] Comment on "Large-scale GWAS reveals insights into the genetic architecture of same-sex sexual behavior"
    Hamer, Dean
    Mustanski, Brian
    Sell, Randall
    Sanders, Stephanie A.
    Garcia, Justin R.
    SCIENCE, 2021, 371 (6536)
  • [9] Mendelian Randomization Integrating GWAS and eQTL Data Reveals Genetic Determinants of Complex and Clinical Traits
    Porcu, Eleonora
    Lepik, Kaido
    Rueger, Sina
    Santoni, Federico A.
    Reymond, Alexandre
    Kutalik, Zoltan
    HUMAN HEREDITY, 2017, 83 (05) : 242 - 243
  • [10] Mendelian randomization integrating GWAS and eQTL data reveals genetic determinants of complex and clinical traits
    Porcu, Eleonora
    Rueger, Sina
    Lepik, Kaido
    Agbessi, Mawusse
    Ahsan, Habibul
    Alves, Isabel
    Andiappan, Anand
    Arindrarto, Wibowo
    Awadalla, Philip
    Battle, Alexis
    Beutner, Frank
    Bonder, Marc Jan
    Boomsma, Dorret
    Christiansen, Mark
    Claringbould, Annique
    Deelen, Patrick
    Esko, Tonu
    Fave, Marie-Julie
    Franke, Lude
    Frayling, Timothy
    Gharib, Sina A.
    Gibson, Gregory
    Heijmans, Bastiaan T.
    Hemani, Gibran
    Jansen, Rick
    Kahonen, Mika
    Kalnapenkis, Anette
    Kasela, Silva
    Kettunen, Johannes
    Kim, Yungil
    Kirsten, Holger
    Kovacs, Peter
    Krohn, Knut
    Kronberg-Guzman, Jaanika
    Kukushkina, Viktorija
    Lee, Bernett
    Lehtimaki, Terho
    Loeffler, Markus
    Marigorta, Urko M.
    Mei, Hailang
    Milani, Lili
    Montgomery, Grant W.
    Mueler-Nurasyid, Martina
    Nauck, Matthias
    Nivard, Michel
    Penninx, Brenda
    Perola, Markus
    Pervjakova, Natalia
    Pierce, Brandon L.
    Powell, Joseph
    NATURE COMMUNICATIONS, 2019, 10 (1)