The classical origin of quantum affine algebra in squashed sigma models

被引:0
|
作者
Io Kawaguchi
Takuya Matsumoto
Kentaroh Yoshida
机构
[1] Kyoto University,Department of Physics
[2] University of Sydney,School of Mathematics and Statistics
[3] Nagoya University,Graduate School of Mathematics
关键词
Integrable Field Theories; Sigma Models; AdS-CFT Correspondence;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a quantum affine algebra realized in two-dimensional non-linear sigma models with target space three-dimensional squashed sphere. Its affine generators are explicitly constructed and the Poisson brackets are computed. The defining relations of quantum affine algebra in the sense of the Drinfeld first realization are satisfied at classical level. The relation to the Drinfeld second realization is also discussed including higher conserved charges. Finally we comment on a semiclassical limit of quantum affine algebra at quantum level.
引用
收藏
相关论文
共 50 条
  • [41] Algebra of nonlocal charges in supersymmetric nonlinear sigma models
    Saltini, LE
    Zadra, A
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1997, 12 (02): : 419 - 436
  • [42] GEOMETRY AND ALGEBRA OF SUPERSYMMETRIC NONLINEAR SIGMA-MODELS
    SPINDEL, P
    SEVRIN, A
    TROOST, W
    VANPROEYEN, A
    ANNALES DE PHYSIQUE, 1989, 14 (06) : 157 - 161
  • [43] PERFECT CRYSTALS FOR THE QUANTUM AFFINE ALGEBRA Uq(Cn(1))
    Kang, Seok-Jin
    Kim, Myungho
    Lee, Inha
    Misra, Kailash C.
    NEW TRENDS IN QUANTUM INTEGRABLE SYSTEMS, 2011, : 139 - 156
  • [44] QUANTUM AFFINE SYMMETRY IN VERTEX MODELS
    IDZUMI, M
    TOKIHIRO, T
    IOHARA, K
    JIMBO, M
    MIWA, T
    NAKASHIMA, T
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1993, 8 (08): : 1479 - 1511
  • [45] Anyonic realization of the quantum affine Lie algebra Uq(AN - 1)
    Phys Lett Sect B Nucl Elem Part High Energy Phys, 3-4 (313):
  • [46] CLASSICAL-SOLUTIONS OF SIGMA-MODELS
    MITTER, H
    WIDDER, F
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1980, 13 (10): : 3275 - 3286
  • [47] Classical limits of quantum toroidal and affine Yangian algebras
    Tsymbaliuk, Alexander
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2017, 221 (10) : 2633 - 2646
  • [48] Topological Defects in Lattice Models and Affine Temperley–Lieb Algebra
    J. Belletête
    A. M. Gainutdinov
    J. L. Jacobsen
    H. Saleur
    T. S. Tavares
    Communications in Mathematical Physics, 2023, 400 : 1203 - 1254
  • [49] Quantum affine Gelfand–Tsetlin bases and quantum toroidal algebra via K-theory of affine Laumon spaces
    Aleksander Tsymbaliuk
    Selecta Mathematica, 2010, 16 : 173 - 200
  • [50] Integrable Sigma Models at RG Fixed Points: Quantisation as Affine Gaudin Models
    Gleb A. Kotousov
    Sylvain Lacroix
    Jörg Teschner
    Annales Henri Poincaré, 2024, 25 : 843 - 1006