Integrality gaps for strengthened linear relaxations of capacitated facility location

被引:0
|
作者
Stavros G. Kolliopoulos
Yannis Moysoglou
机构
[1] University of Athens,Department of Informatics and Telecommunications, National and Kapodistrian
来源
Mathematical Programming | 2016年 / 158卷
关键词
Operations research; Mathematical programming; Discrete location and assignment; 90B80;
D O I
暂无
中图分类号
学科分类号
摘要
Metric uncapacitated facility location is a well-studied problem for which linear programming methods have been used with great success in deriving approximation algorithms. Capacitated facility location (Cfl) is a generalization for which there are local-search-based constant-factor approximations, while there is no known compact relaxation with constant integrality gap. This paper produces, through a host of impossibility results, the first comprehensive investigation of the effectiveness of mathematical programming for metric capacitated facility location, with emphasis on lift-and-project methods. We show that the relaxations obtained from the natural LP at Ω(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega (n)$$\end{document} levels of the semidefinite Lovász–Schrijver hierarchy for mixed programs, and at Ω(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega (n)$$\end{document} levels of the Sherali–Adams hierarchy, have an integrality gap of Ω(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega (n)$$\end{document}, where n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} is the number of facilities, partially answering an open question of An et al. (Centrality of trees for capacitated k-center, 2013), Li and Svensson (Proceedings of 45th ACM Symposium on Theory of Computing, STOC ’13. ACM, pp 901–910, 2013). For the families of instances we consider, both hierarchies yield at the n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}th level an exact formulation for Cfl. Thus our bounds are asymptotically tight. Building on our methodology for the Sherali–Adams result, we prove that the standard Cfl relaxation enriched with the submodular inequalities of Aardal et al. (Math Oper Res 20:562–582, 1995), a generalization of the flow-cover valid inequalities, has also an Ω(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega (n)$$\end{document} gap and thus not bounded by any constant. This disproves a long-standing conjecture of Levi et al (Math Program 131(1–2):365–379, 2012). We finally introduce the family of proper relaxations which generalizes to its logical extreme the classic star relaxation and captures general configuration-style LPs. We characterize the behavior of proper relaxations for Cfl through a sharp threshold phenomenon.
引用
收藏
页码:99 / 141
页数:42
相关论文
共 50 条
  • [31] CAPACITATED FACILITY LOCATION - VALID INEQUALITIES AND FACETS
    AARDAL, K
    POCHET, Y
    WOLSEY, LA
    MATHEMATICS OF OPERATIONS RESEARCH, 1995, 20 (03) : 562 - 582
  • [32] RAMP algorithms for the capacitated facility location problem
    Matos, Telmo
    Oliveira, Oscar
    Gamboa, Dorabela
    ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2021, 89 (8-9) : 799 - 813
  • [34] Capacitated facility location/network design problems
    Melkote, S
    Daskin, MS
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2001, 129 (03) : 481 - 495
  • [35] RAMP algorithms for the capacitated facility location problem
    Telmo Matos
    Óscar Oliveira
    Dorabela Gamboa
    Annals of Mathematics and Artificial Intelligence, 2021, 89 : 799 - 813
  • [36] Model and Solution for Capacitated Facility Location Problem
    Yu, Hongtao
    Gao, Liqun
    Lei, Yanhua
    PROCEEDINGS OF THE 2012 24TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2012, : 1773 - 1776
  • [37] A 5-Approximation for Capacitated Facility Location
    Bansal, Manisha
    Garg, Naveen
    Gupta, Neelima
    ALGORITHMS - ESA 2012, 2012, 7501 : 133 - 144
  • [38] Proving integrality gaps without knowing the linear program
    Arora, S
    Bollobás, B
    Lovász, L
    FOCS 2002: 43RD ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2002, : 313 - 322
  • [39] Proving integrality gaps without knowing the linear program
    Arora, S
    FUNDAMENTALS OF COMPUTATION THEORY, PROCEEDINGS, 2003, 2751 : 1 - 1
  • [40] Approximation Algorithms for Soft-Capacitated Facility Location in Capacitated Network Design
    Chen, Xujin
    Chen, Bo
    ALGORITHMICA, 2009, 53 (03) : 263 - 297