Integrality gaps for strengthened linear relaxations of capacitated facility location

被引:0
|
作者
Stavros G. Kolliopoulos
Yannis Moysoglou
机构
[1] University of Athens,Department of Informatics and Telecommunications, National and Kapodistrian
来源
Mathematical Programming | 2016年 / 158卷
关键词
Operations research; Mathematical programming; Discrete location and assignment; 90B80;
D O I
暂无
中图分类号
学科分类号
摘要
Metric uncapacitated facility location is a well-studied problem for which linear programming methods have been used with great success in deriving approximation algorithms. Capacitated facility location (Cfl) is a generalization for which there are local-search-based constant-factor approximations, while there is no known compact relaxation with constant integrality gap. This paper produces, through a host of impossibility results, the first comprehensive investigation of the effectiveness of mathematical programming for metric capacitated facility location, with emphasis on lift-and-project methods. We show that the relaxations obtained from the natural LP at Ω(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega (n)$$\end{document} levels of the semidefinite Lovász–Schrijver hierarchy for mixed programs, and at Ω(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega (n)$$\end{document} levels of the Sherali–Adams hierarchy, have an integrality gap of Ω(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega (n)$$\end{document}, where n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} is the number of facilities, partially answering an open question of An et al. (Centrality of trees for capacitated k-center, 2013), Li and Svensson (Proceedings of 45th ACM Symposium on Theory of Computing, STOC ’13. ACM, pp 901–910, 2013). For the families of instances we consider, both hierarchies yield at the n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}th level an exact formulation for Cfl. Thus our bounds are asymptotically tight. Building on our methodology for the Sherali–Adams result, we prove that the standard Cfl relaxation enriched with the submodular inequalities of Aardal et al. (Math Oper Res 20:562–582, 1995), a generalization of the flow-cover valid inequalities, has also an Ω(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega (n)$$\end{document} gap and thus not bounded by any constant. This disproves a long-standing conjecture of Levi et al (Math Program 131(1–2):365–379, 2012). We finally introduce the family of proper relaxations which generalizes to its logical extreme the classic star relaxation and captures general configuration-style LPs. We characterize the behavior of proper relaxations for Cfl through a sharp threshold phenomenon.
引用
收藏
页码:99 / 141
页数:42
相关论文
共 50 条
  • [1] Integrality gaps for strengthened linear relaxations of capacitated facility location
    Kolliopoulos, Stavros G.
    Moysoglou, Yannis
    MATHEMATICAL PROGRAMMING, 2016, 158 (1-2) : 99 - 141
  • [3] Integrality Gaps of Linear and Semi-Definite Programming Relaxations for Knapsack
    Karlin, Anna R.
    Mathieu, Claire
    Nguyen, C. Thach
    INTEGER PROGRAMMING AND COMBINATORAL OPTIMIZATION, IPCO 2011, 2011, 6655 : 301 - 314
  • [4] Integrality Gaps for Sherali-Adams Relaxations
    Charikar, Moses
    Makarychev, Konstantin
    Makarychev, Yury
    STOC'09: PROCEEDINGS OF THE 2009 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2009, : 283 - 292
  • [5] Matroids and Integrality Gaps for Hypergraphic Steiner Tree Relaxations
    Goemans, Michel X.
    Olver, Neil
    Rothvo, Thomas
    Zenklusen, Rico
    STOC'12: PROCEEDINGS OF THE 2012 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2012, : 1161 - 1175
  • [6] Integrality Gaps for Strong SDP Relaxations of UNIQUE GAMES
    Raghavendra, Prasad
    Steurer, David
    2009 50TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE: FOCS 2009, PROCEEDINGS, 2009, : 575 - 585
  • [7] ON THE INTEGRALITY OF SOME FACILITY LOCATION POLYTOPES
    Baiou, Mourad
    Barahona, Francisco
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2009, 23 (02) : 665 - 679
  • [8] Strengthening integrality gaps for capacitated network design and covering problems
    Carr, RD
    Fleischer, LK
    Leung, VJ
    Phillips, CA
    PROCEEDINGS OF THE ELEVENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2000, : 106 - 115
  • [9] CAPACITATED FACILITY LOCATION.
    Kershenbaum, Aaron
    1987, : 33 - 49
  • [10] Semidefinite Programming Relaxations of the Traveling Salesman Problem and Their Integrality Gaps
    Gutekunst, Samuel C.
    Williamson, David P.
    MATHEMATICS OF OPERATIONS RESEARCH, 2022, 47 (01) : 1 - 28