SQL extension for spatio-temporal data

被引:0
|
作者
Jose R. Rios Viqueira
Nikos A. Lorentzos
机构
[1] University of Santiago de Compostela,Systems Laboratory, Department of Electronics and Computer Science, Instituto de Investigaciones Tecnológicas
[2] Agricultural University of Athens,Informatics Laboratory
来源
The VLDB Journal | 2007年 / 16卷
关键词
Spatial databases; Data modelling; Spatio-temporal databases; SQL;
D O I
暂无
中图分类号
学科分类号
摘要
An SQL extension is formalized for the management of spatio-temporal data, i.e. of spatial data that evolves with respect to time. The extension is dedicated to applications such as topography, cartography, and cadastral systems, hence it considers discrete changes both in space and in time. It is based on the rigid formalization of data types and of SQL constructs. Data types are defined in terms of time and spatial quanta. The SQL constructs are defined in terms of a kernel of few relational algebra operations, composed of the well-known operations of the 1NF model and of two more, Unfold and Fold. In conjunction with previous work, it enables the uniform management of 1NF structures that may contain not only spatio-temporal but also either purely temporal or purely spatial or conventional data. The syntax and semantics of the extension is fully consistent with the {SQL:2003} standard.
引用
收藏
页码:179 / 200
页数:21
相关论文
共 50 条
  • [41] A Review of Maritime Spatio-temporal Data Analytics
    Newaliya, Nitin
    Singh, Yudhvir
    2021 INTERNATIONAL CONFERENCE ON COMPUTATIONAL PERFORMANCE EVALUATION (COMPE-2021), 2021, : 219 - 226
  • [42] Enabling Spatio-Temporal Search in Open Data
    Neumaier, Sebastian
    Polleres, Axel
    JOURNAL OF WEB SEMANTICS, 2019, 55 : 21 - 36
  • [43] Spatio-temporal modeling of residential sales data
    Gelfand, AE
    Ghosh, SK
    Knight, JR
    Sirmans, CF
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 1998, 16 (03) : 312 - 321
  • [44] Spatio-Temporal Scale Selection in Video Data
    Tony Lindeberg
    Journal of Mathematical Imaging and Vision, 2018, 60 : 525 - 562
  • [45] CUPID: An efficient spatio-temporal data engine
    Wu, Hang
    Wang, Bo
    Zhang, Ming
    Li, Guanyao
    Li, Ruiyuan
    Liu, Yang
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2024, 161 : 531 - 544
  • [46] Data analysis and processing for spatio-temporal forecasting
    Lee, Hyoungwoo
    Choo, Jaegul
    20TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2020), 2020, : 737 - 739
  • [47] Spatio-temporal autocorrelation of road network data
    Tao Cheng
    James Haworth
    Jiaqiu Wang
    Journal of Geographical Systems, 2012, 14 : 389 - 413
  • [48] Multiscale recurrence analysis of spatio-temporal data
    Riedl, M.
    Marwan, N.
    Kurths, J.
    CHAOS, 2015, 25 (12)
  • [49] Dynamic spatio-temporal models for spatial data
    Hefley, Trevor J.
    Hooten, Mevin B.
    Hanks, Ephraim M.
    Russell, Robin E.
    Walsh, Daniel P.
    SPATIAL STATISTICS, 2017, 20 : 206 - 220
  • [50] Evaluation Procedures for Forecasting with Spatio-Temporal Data
    Oliveira, Mariana
    Torgo, Luis
    Costa, Vitor Santos
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2018, PT I, 2019, 11051 : 703 - 718