The partially shared values and small functions for meromorphic functions in a k-punctured complex plane

被引:0
|
作者
Hong Yan Xu
Yong Ming Li
Shan Liu
机构
[1] Shangrao Normal University,School of Mathematics and Computer Science
[2] Jiangxi Science & Technology Normal College,Department of Mathematics & Computer Science
关键词
Meromorphic function; Partially sharing; Small function; -punctured; 30D30; 30D35;
D O I
暂无
中图分类号
学科分类号
摘要
The main aim of this article is to discuss the uniqueness of meromorphic functions partially sharing some values and small functions in a k-punctured complex plane Ω. We proved the following: Let f1,f2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f_{1},f_{2}$\end{document} be two admissible meromorphic functions in Ω and αj(j=1,2,…,l)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha _{j}\ (j=1,2,\ldots ,l)$\end{document} be l(≥5)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$l(\geq 5)$\end{document} distinct small functions with respect to f and g. If E˜(αj,Ω,f1)⊆E˜(αj,Ω,f2)(j=1,2,…,l)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widetilde{E}(\alpha _{j},\varOmega ,f_{1})\subseteq \widetilde{E}(\alpha _{j},\varOmega , f_{2})\ (j=1,2,\ldots ,l)$\end{document} and lim infr→+∞∑j=1lN‾0(r,1f1−αj)∑j=1lN‾0(r,1f2−αj)>52l−5,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \liminf_{r\rightarrow +\infty }\frac{\sum_{j=1}^{l}\overline{N} _{0} (r,\frac{1}{f_{1}-\alpha _{j}} )}{\sum_{j=1} ^{l}\overline{N}_{0} (r,\frac{1}{f_{2}-\alpha _{j}} )}> \frac{5}{2l-5}, $$\end{document} then f1≡f2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f_{1}\equiv f_{2}$\end{document}. Our results are some improvements and extension of previous theorems given by Cao–Yi and Ge–Wu.
引用
收藏
相关论文
共 50 条
  • [31] Normal Families and Shared Values of Meromorphic Functions
    Xiaoyi Liu
    Bulletin of the Malaysian Mathematical Sciences Society, 2016, 39 : 155 - 171
  • [32] Normal families and shared values of meromorphic functions
    Meng, Chao
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2008, 31 (01) : 85 - 90
  • [33] NORMAL FAMILIES OF MEROMORPHIC FUNCTIONS WITH SHARED VALUES
    Chen, Wei
    Tian, Honggen
    Hu, Peichu
    ACTA MATHEMATICA SCIENTIA, 2016, 36 (01) : 87 - 93
  • [34] On meromorphic functions for sharing two sets and three sets in m-punctured complex plane
    Xu, Hong-Yan
    Zheng, Xiu-Min
    Wang, Hua
    OPEN MATHEMATICS, 2016, 14 : 913 - 924
  • [35] VALIRON DEFICIENT VALUES FOR MEROMORPHIC FUNCTIONS IN PLANE
    HYLLENGR.A
    ACTA MATHEMATICA UPPSALA, 1970, 124 (1-2): : 1 - &
  • [36] Normal Family of Meromorphic Functions concerning Shared Values
    Chen, Wei
    Tian, Honggen
    Zhang, Yingying
    Yuan, Wenjun
    JOURNAL OF COMPLEX ANALYSIS, 2013,
  • [37] Shared values of meromorphic functions on compact Riemann surfaces
    Andreas Schweizer
    Archiv der Mathematik, 2005, 84 : 71 - 78
  • [38] Periodicity and unicity of meromorphic functions with three shared values
    Chen, Shengjiang
    Xu, Aizhu
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 385 (01) : 485 - 490
  • [39] Normal Families and Shared Values of Meromorphic Functions III
    Mingliang Fang
    Lawrence Zalcman
    Computational Methods and Function Theory, 2004, 2 (2) : 385 - 395
  • [40] Shared values of meromorphic functions on compact Riemann surfaces
    Schweizer, A
    ARCHIV DER MATHEMATIK, 2005, 84 (01) : 71 - 78