Distances between optimal solutions of mixed-integer programs

被引:0
|
作者
Joseph Paat
Robert Weismantel
Stefan Weltge
机构
[1] ETH Zurich,Institute for Operations Research
[2] Technical University of Munich,undefined
来源
Mathematical Programming | 2020年 / 179卷
关键词
90C11; 11B75;
D O I
暂无
中图分类号
学科分类号
摘要
A classic result of Cook et al. (Math. Program. 34:251–264, 1986) bounds the distances between optimal solutions of mixed-integer linear programs and optimal solutions of the corresponding linear relaxations. Their bound is given in terms of the number of variables and a parameter Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \varDelta $$\end{document}, which quantifies sub-determinants of the underlying linear inequalities. We show that this distance can be bounded in terms of Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \varDelta $$\end{document} and the number of integer variables rather than the total number of variables. To this end, we make use of a result by Olson (J. Number Theory 1:8–10, 1969) in additive combinatorics and demonstrate how it implies feasibility of certain mixed-integer linear programs. We conjecture that our bound can be improved to a function that only depends on Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \varDelta $$\end{document}, in general.
引用
收藏
页码:455 / 468
页数:13
相关论文
共 50 条
  • [21] ON SUBADDITIVE DUALITY FOR CONIC MIXED-INTEGER PROGRAMS
    Kocuk, Burak
    Moran R, Diego A.
    SIAM JOURNAL ON OPTIMIZATION, 2019, 29 (03) : 2320 - 2336
  • [22] A hierarchy of bounds for stochastic mixed-integer programs
    Sandikci, Burhaneddin
    Kong, Nan
    Schaefer, Andrew J.
    MATHEMATICAL PROGRAMMING, 2013, 138 (1-2) : 253 - 272
  • [23] Mixed-integer optimal control for multimodal chromatography
    Bock, Hans Georg
    Cebulla, Dominik H.
    Kirches, Christian
    Potschka, Andreas
    COMPUTERS & CHEMICAL ENGINEERING, 2021, 153
  • [24] Foundation-penalty cuts for mixed-integer programs
    Glover, F
    Sherali, HD
    OPERATIONS RESEARCH LETTERS, 2003, 31 (04) : 245 - 253
  • [25] Coefficient strengthening: a tool for reformulating mixed-integer programs
    Andersen, Kent
    Pochet, Yves
    MATHEMATICAL PROGRAMMING, 2010, 122 (01) : 121 - 154
  • [26] A Framework for Globally Optimizing Mixed-Integer Signomial Programs
    Ruth Misener
    Christodoulos A. Floudas
    Journal of Optimization Theory and Applications, 2014, 161 : 905 - 932
  • [27] Irreducible Infeasible Sets in Convex Mixed-Integer Programs
    Wiesława T. Obuchowska
    Journal of Optimization Theory and Applications, 2015, 166 : 747 - 766
  • [28] Global solution of nonlinear mixed-integer bilevel programs
    Mitsos, Alexander
    JOURNAL OF GLOBAL OPTIMIZATION, 2010, 47 (04) : 557 - 582
  • [29] Irreducible Infeasible Sets in Convex Mixed-Integer Programs
    Obuchowska, Wiesawa T.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2015, 166 (03) : 747 - 766
  • [30] A DC Programming Approach for Mixed-Integer Linear Programs
    Niu, Yi-Shuai
    Dinh, Tao Pham
    MODELLING, COMPUTATION AND OPTIMIZATION IN INFORMATION SYSTEMS AND MANAGEMENT SCIENCES, PROCEEDINGS, 2008, 14 : 244 - 253