Experimental analysis on hydrodynamic coefficients of an underwater glider with spherical nose for dynamic modeling and motion simulation

被引:0
|
作者
Kambiz Divsalar
Rouzbeh Shafaghat
Mousa Farhadi
Rezvan Alamian
机构
[1] Babol Noshirvani University of Technology,Sea
来源
SN Applied Sciences | 2021年 / 3卷
关键词
Underwater glider; Towing tank; Hydrodynamic coefficients; Motion dynamics modeling; Meta-heuristic algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present a study of an underwater glider with a cylindrical body, a conical end shape and a spherical nose with NACA0009 airfoil wings. In the experimental section, we investigate the hydrodynamic coefficients of drag and lift as well as the torque on the glider then analyze the launch velocity, launch angles, angular velocity, and displacement range as the main parameters for evaluating of motion dynamics. In the numerical section, we investigate the optimal performance of the glider using the meta-heuristic optimization method in order to find the path and range of motion of the moving mass and control of the sea glider, which is very important for navigation scope. To be specific, body and wings hydrodynamic coefficients are obtained in the velocity range of [0.2, 1] m/s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m/s$$\end{document}; According to the results, the drag coefficient increases with increasing velocity, while the lift coefficient increases up to velocity of 0.8m/s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.8 m/s$$\end{document}, then decreases at velocity of 1m/s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 m/s$$\end{document}. Also, the wing drag coefficient decreases with increasing velocity, while the wing lift coefficient increases with increasing velocity. In the next step, in order to calculate an optimum ratio between obtained depth and horizontal distance, the designed algorithm investigate the glider launch angle and finally, the 10 degrees launch angle is chosen as the optimum angle. Subsequently, the analysis performed on mass center displacement range shows that the oscillation interval [-0.045,0.085]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[- 0.045, 0.085]$$\end{document} m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m$$\end{document} is an optimum displacement domain.
引用
下载
收藏
相关论文
共 50 条
  • [21] Modeling and Motion Simulation for A Flying-Wing Underwater Glider with A Symmetrical Airfoil
    Liang Zhao
    Peng Wang
    Chun-ya Sun
    Bao-wei Song
    China Ocean Engineering, 2019, 33 : 322 - 332
  • [22] Modeling and Motion Simulation for A Flying-Wing Underwater Glider with A Symmetrical Airfoil
    ZHAO Liang
    WANG Peng
    SUN Chun-ya
    SONG Bao-wei
    China Ocean Engineering, 2019, 33 (03) : 322 - 332
  • [23] Dynamics Modeling and Hydrodynamic Coefficients Identification of the Wave Glider
    Sun, Xiujun
    Sun, Chenyu
    Sang, Hongqiang
    Li, Can
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2022, 10 (04)
  • [24] Three dimensional model, hydrodynamics analysis and motion simulation of an underwater glider
    Cao, Junjun
    Cao, Junliang
    Yao, Baoheng
    Lian, Lian
    OCEANS 2015 - GENOVA, 2015,
  • [25] Microstructure Measurement Form an Underwater Glider : Motion Analysis and Experimental Results
    Weng, Yang
    Yang, Hua
    He, Jingyuan
    Song, Dalei
    OCEANS 2015 - GENOVA, 2015,
  • [26] Design and Motion Simulation of an Underwater Glider in the Vertical Plane
    Huang, Jiafeng
    Choi, Hyeung-Sik
    Jung, Dong-Wook
    Lee, Ji-Hyeong
    Kim, Myung-Jun
    Choo, Ki-Beom
    Cho, Hyun-Joon
    Jin, Han-Sol
    APPLIED SCIENCES-BASEL, 2021, 11 (17):
  • [27] The hydrodynamic analysis of hybrid-driven underwater glider
    Xiong, Gang
    Jiang, Jian
    Wu, Yitao
    Chen, Jun
    MANUFACTURING PROCESS AND EQUIPMENT, PTS 1-4, 2013, 694-697 : 577 - +
  • [28] Design and experimental study of buoyancy adjustment of underwater glider based on numerical motion simulation
    Zhang A.-T.
    Zhang H.
    Xiao D.-L.
    Chen L.-Y.
    Xu L.-L.
    Wang J.
    Chuan Bo Li Xue/Journal of Ship Mechanics, 2020, 24 (09): : 1119 - 1126
  • [29] Shape design and motion analysis of underwater glider
    Zhao, Qian
    Yan, Tianhong
    He, Bo
    ENERGY SCIENCE AND APPLIED TECHNOLOGY, 2016, : 167 - 172
  • [30] Hydrodynamic Coefficients Calculation and Dynamic Modeling of an Open-frame Underwater Robot
    Yan Y.
    Yu F.
    Chen Y.
    Binggong Xuebao/Acta Armamentarii, 2021, 42 (09): : 1972 - 1986