Experimental analysis on hydrodynamic coefficients of an underwater glider with spherical nose for dynamic modeling and motion simulation

被引:0
|
作者
Kambiz Divsalar
Rouzbeh Shafaghat
Mousa Farhadi
Rezvan Alamian
机构
[1] Babol Noshirvani University of Technology,Sea
来源
SN Applied Sciences | 2021年 / 3卷
关键词
Underwater glider; Towing tank; Hydrodynamic coefficients; Motion dynamics modeling; Meta-heuristic algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present a study of an underwater glider with a cylindrical body, a conical end shape and a spherical nose with NACA0009 airfoil wings. In the experimental section, we investigate the hydrodynamic coefficients of drag and lift as well as the torque on the glider then analyze the launch velocity, launch angles, angular velocity, and displacement range as the main parameters for evaluating of motion dynamics. In the numerical section, we investigate the optimal performance of the glider using the meta-heuristic optimization method in order to find the path and range of motion of the moving mass and control of the sea glider, which is very important for navigation scope. To be specific, body and wings hydrodynamic coefficients are obtained in the velocity range of [0.2, 1] m/s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m/s$$\end{document}; According to the results, the drag coefficient increases with increasing velocity, while the lift coefficient increases up to velocity of 0.8m/s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.8 m/s$$\end{document}, then decreases at velocity of 1m/s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 m/s$$\end{document}. Also, the wing drag coefficient decreases with increasing velocity, while the wing lift coefficient increases with increasing velocity. In the next step, in order to calculate an optimum ratio between obtained depth and horizontal distance, the designed algorithm investigate the glider launch angle and finally, the 10 degrees launch angle is chosen as the optimum angle. Subsequently, the analysis performed on mass center displacement range shows that the oscillation interval [-0.045,0.085]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[- 0.045, 0.085]$$\end{document} m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m$$\end{document} is an optimum displacement domain.
引用
下载
收藏
相关论文
共 50 条
  • [1] Experimental analysis on hydrodynamic coefficients of an underwater glider with spherical nose for dynamic modeling and motion simulation
    Divsalar, Kambiz
    Shafaghat, Rouzbeh
    Farhadi, Mousa
    Alamian, Rezvan
    SN APPLIED SCIENCES, 2021, 3 (02):
  • [2] Sensitivity Analysis of the Turning Motion of an Underwater Glider on the Viscous Hydrodynamic Coefficients
    Rayaprolu, V. S. S.
    Vijayakumar, R.
    DEFENCE SCIENCE JOURNAL, 2021, 71 (05) : 709 - 717
  • [3] Hydrodynamic Coefficients and Motion Simulations of Underwater Glider for Virtual Mooring
    Nakamura, Masahiko
    Asakawa, Kenichi
    Hyakudome, Tadahiro
    Kishima, Satoru
    Matsuoka, Hiroki
    Minami, Takuya
    IEEE JOURNAL OF OCEANIC ENGINEERING, 2013, 38 (03) : 581 - 597
  • [4] Hydrodynamic and vertical motion analysis of an underwater glider
    Yang, Lei
    Cao, Junjun
    Cao, Junliang
    Yao, Baoheng
    Zeng, Zheng
    Lian, Lian
    OCEANS 2016 - SHANGHAI, 2016,
  • [5] Dynamic modeling and experimental analysis of an underwater glider in the ocean
    Jing, Guo
    Lei, Lei
    Gang, Yang
    APPLIED MATHEMATICAL MODELLING, 2022, 108 : 392 - 407
  • [6] Dynamic Modeling and Motion Simulation of a Movable-Winged Underwater Glider
    Song, Baowei
    Tian, Wenlong
    Mao, Zhaoyong
    MECHATRONICS AND INTELLIGENT MATERIALS II, PTS 1-6, 2012, 490-495 : 1326 - 1331
  • [7] Dynamic Modeling and Motion Simulation for A Winged Hybrid-Driven Underwater Glider
    王树新
    孙秀军
    王延辉
    武建国
    王晓鸣
    China Ocean Engineering, 2011, 25 (01) : 97 - 112
  • [8] Dynamic Modeling and Motion Simulation for A Winged Hybrid-Driven Underwater Glider
    Wang Shu-xin
    Sun Xiu-jun
    Wang Yan-hui
    Wu Jian-guo
    Wang Xiao-ming
    CHINA OCEAN ENGINEERING, 2011, 25 (01) : 97 - 112
  • [9] Dynamic modeling and motion simulation for a winged hybrid-driven underwater glider
    Shu-xin Wang
    Xiu-jun Sun
    Yan-hui Wang
    Jian-guo Wu
    Xiao-ming Wang
    China Ocean Engineering, 2011, 25 : 97 - 112
  • [10] Motion Simulation of an Underwater Glider
    Ma, Yu
    Liu, Xiao-Wei
    Ou, Ping
    2015 7TH INTERNATIONAL CONFERENCE ON INTELLIGENT HUMAN-MACHINE SYSTEMS AND CYBERNETICS IHMSC 2015, VOL I, 2015, : 539 - 542