Symmetric cubic graphs via rigid cells

被引:0
|
作者
Marston D. E. Conder
Ademir Hujdurović
Klavdija Kutnar
Dragan Marušič
机构
[1] University of Auckland,Department of Mathematics
[2] University of Primorska,undefined
[3] UP IAM,undefined
[4] University of Primorska,undefined
[5] UP FAMNIT,undefined
[6] IMFM,undefined
来源
关键词
Automorphism group; Arc-transitive; Symmetric cubic graph; Rigid cell;
D O I
暂无
中图分类号
学科分类号
摘要
Properties of symmetric cubic graphs are described via their rigid cells, which are maximal connected subgraphs fixed pointwise by some involutory automorphism of the graph. This paper completes the description of rigid cells and the corresponding involutions for each of the 17 ‘action types’ of symmetric cubic graphs.
引用
收藏
页码:881 / 895
页数:14
相关论文
共 50 条
  • [21] CUBIC SYMMETRIC GRAPHS OF ORDER 12p3
    Ma, Xuanlong
    Wei, Huaquan
    UTILITAS MATHEMATICA, 2018, 109 : 255 - 262
  • [22] Note on cubic symmetric graphs of order 2pn
    Cheng, Hui-Wen
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2010, 47 : 205 - 210
  • [23] A novel characterization of cubic Hamiltonian graphs via the associated quartic graphs
    Bonvicini, Simona
    Pisanski, Tomaz
    ARS MATHEMATICA CONTEMPORANEA, 2017, 12 (01) : 1 - 24
  • [24] A classification of cubic symmetric graphs of order 16p2
    MEHDI ALAEIYAN
    B N ONAGH
    M K HOSSEINIPOOR
    Proceedings - Mathematical Sciences, 2011, 121 : 249 - 257
  • [25] Classifying cubic symmetric graphs of order 18p2
    Alaeiyan, M.
    Hosseinipoor, M. K.
    Akbarizadeh, M.
    ARMENIAN JOURNAL OF MATHEMATICS, 2020, 12 (01): : 1 - 11
  • [26] A classification of cubic symmetric graphs of order 16p 2
    Alaeiyan, Mehdi
    Onagh, B. N.
    Hosseinipoor, M. K.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2011, 121 (03): : 249 - 257
  • [27] Cubic symmetric graphs of order twice an odd prime-power
    Feng, Yan-Quan
    Kwak, Jin Ho
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2006, 81 : 153 - 164
  • [28] Cubic core-free symmetric m-Cayley graphs
    Du, Jia-Li
    Conder, Marston
    Feng, Yan-Quan
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2019, 50 (02) : 143 - 163
  • [29] Notes on cubic symmetric graphs of order 22p3
    Zhai, Liangliang
    Ma, Xuanlong
    ARS COMBINATORIA, 2020, 148 : 69 - 75
  • [30] Classifying cubic symmetric graphs of order 52p2
    Hao, Shangjing
    Lin, Shixun
    PROCEEDINGS OF THE ESTONIAN ACADEMY OF SCIENCES, 2023, 72 (01) : 55 - 60