We study a class of typical Hartogs domains which is called a generalized Fock-Bargmann-Hartogs domain Dn,mp(μ). The generalized Fock-Bargmann-Hartogs domain is defined by inequality eμ‖z‖2∑j=1m|ωj|2p<1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${e^{\mu {{\left\| z \right\|}^2}}}\sum\limits_{j = 1}^m {{{\left| {{\omega _j}} \right|}^{2p}} < 1} $$\end{document}, where (z, ω) ∈ ℂn × ℂm. In this paper, we will establish a rigidity of its holomorphic automorphism group. Our results imply that a holomorphic self-mapping of the generalized Fock-Bargmann-Hartogs domain Dn,m/p(μ) becomes a holomorphic automorphism if and only if it keeps the function ∑j=1m|ωj|2peμ‖z‖2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\sum\limits_{j = 1}^m {{{\left| {{\omega _j}} \right|}^{2p}}{e^{\mu {{\left\| z \right\|}^2}}}} $$\end{document} invariant.
机构:
Korea Inst Adv Study, Ctr Math Challenges, 85 Hoegi Ro, Seoul 02455, South KoreaKorea Inst Adv Study, Ctr Math Challenges, 85 Hoegi Ro, Seoul 02455, South Korea
Kim, Hyeseon
Yamamori, Atsushi
论文数: 0引用数: 0
h-index: 0
机构:
Kogakuin Univ, Acad Support Ctr, Hachioji, Tokyo 1920015, JapanKorea Inst Adv Study, Ctr Math Challenges, 85 Hoegi Ro, Seoul 02455, South Korea
机构:
Wuhan Univ, Sch Math & Stat, Wuhan 430072, Hunan, Peoples R ChinaWuhan Univ, Sch Math & Stat, Wuhan 430072, Hunan, Peoples R China
Bi, Enchao
Feng, Zhiming
论文数: 0引用数: 0
h-index: 0
机构:
Leshan Normal Univ, Sch Math & Informat Sci, Leshan 614000, Sichuan, Peoples R ChinaWuhan Univ, Sch Math & Stat, Wuhan 430072, Hunan, Peoples R China
Feng, Zhiming
Tu, Zhenhan
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ, Sch Math & Stat, Wuhan 430072, Hunan, Peoples R ChinaWuhan Univ, Sch Math & Stat, Wuhan 430072, Hunan, Peoples R China
机构:
Kyung Hee Univ, Dept Math, Seoul 02447, South Korea
Kyung Hee Univ, Res Inst Basic Sci, Seoul 02447, South KoreaKyung Hee Univ, Dept Math, Seoul 02447, South Korea