Boundary behavior of the Bergman kernel for generalized Fock-Bargmann-Hartogs domains

被引:0
|
作者
Park, Jong-Do [1 ,2 ]
机构
[1] Kyung Hee Univ, Dept Math, Seoul 02447, South Korea
[2] Kyung Hee Univ, Res Inst Basic Sci, Seoul 02447, South Korea
基金
新加坡国家研究基金会;
关键词
Bergman kernel; Generalized Fock space  Mittag-Leffler function; Boundary behavior; Generalized Fock-Bargmann-Hartogs domains; BIHOLOMORPHIC-MAPPINGS; FORMULAS;
D O I
10.1016/j.jmaa.2021.125909
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the Bergman kernel for the Hartogs type domain D-mu,D-p := (z, zeta) is an element of C x C-n : II zeta II2 < e(-mu|z|p)}. In particular, we compute the explicit form of the Bergman kernel for D-mu,D-2/m for any positive integer m. The relations between the Mittag-Leffler function and the generalized Fock kernel are investigated. Using the explicit formula, we study the asymptotic behavior of the Fock kernel and the boundary behavior of the Bergman kernel on the diagonal for the generalized Fock-Bargmann-Hartogs domains D-mu,D-2/m. (c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] The Bergman kernel and projection on the Fock-Bargmann-Hartogs domain
    Dai, Jineng
    Li, Yuanyuan
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2022, 67 (01) : 34 - 48
  • [2] Rigidity of the Holomorphic Automorphism of the Generalized Fock-Bargmann-Hartogs Domains
    Ting Guo
    Zhiming Feng
    Enchao Bi
    Czechoslovak Mathematical Journal, 2021, 71 : 373 - 386
  • [3] Rigidity of the Holomorphic Automorphism of the Generalized Fock-Bargmann-Hartogs Domains
    Guo, Ting
    Feng, Zhiming
    Bi, Enchao
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2021, 71 (02) : 373 - 386
  • [4] TWO THEOREMS ON THE FOCK-BARGMANN-HARTOGS DOMAINS
    Kodama, Akio
    Shimizu, Satoru
    OSAKA JOURNAL OF MATHEMATICS, 2019, 56 (04) : 739 - 757
  • [5] Balanced metrics on the Fock-Bargmann-Hartogs domains
    Bi, Enchao
    Feng, Zhiming
    Tu, Zhenhan
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2016, 49 (04) : 349 - 359
  • [6] RIGIDITY OF PROPER HOLOMORPHIC MAPPINGS BETWEEN GENERALIZED FOCK-BARGMANN-HARTOGS DOMAINS
    Bi, Enchao
    Tu, Zhenhan
    PACIFIC JOURNAL OF MATHEMATICS, 2018, 297 (02) : 277 - 297
  • [7] A criterion for biholomorphicity of self-mappings of generalized Fock-Bargmann-Hartogs domains
    Kodama, Akio
    HIROSHIMA MATHEMATICAL JOURNAL, 2023, 53 (01) : 111 - 127
  • [8] Lp REGULARITY OF THE WEIGHTED BERGMAN PROJECTION ON THE FOCK-BARGMANN-HARTOGS DOMAIN
    He, Le
    Tang, Yanyan
    Tu, Zhenhan
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2020, 102 (02) : 282 - 292
  • [9] THE EXTREMAL METRIC ON A CLASS OF TWISTED FOCK-BARGMANN-HARTOGS DOMAINS
    Chen, Jing
    Guan, Daniel Zhuang-Dan
    Jing, Shaojun
    Tang, Yanyan
    PACIFIC JOURNAL OF MATHEMATICS, 2024, 333 (01)
  • [10] The holomorphic automorphism groups of twisted Fock-Bargmann-Hartogs domains
    Hyeseon Kim
    Atsushi Yamamori
    Czechoslovak Mathematical Journal, 2018, 68 : 611 - 631