Two-stage explicit Runge-Kutta type methods using derivatives

被引:0
|
作者
H. Ono
T. Yoshida
机构
[1] Hachimanyama-3,Department of Information and Communication Engineering
[2] The University of Electro-communications,undefined
关键词
Runge-Kutta method; higher order method; automatic differentiation; embedded formula;
D O I
暂无
中图分类号
学科分类号
摘要
Two-stage explicit Runge-Kutta type methods using derivatives for the systemy′(t) =f(y(t)),y(t0) =y0 are considered. Derivatives in the first stage have the standard form, but in the second stage, they have the form included in the limiting formula. The κth-order Taylor series method uses derivativesf∼’,f∼",…,f(κ−1) Though the values of derivatives can be easily obtained by using automatic differentiation, the cost increases proportional to square of the order of differentiation. Two-stage methods considered here use the derivatives up tof(κ−3) in the first stage andf,f∼’ in the second stage. They can achieve κth-order accuracy and construct embedded formula for the error estimation.
引用
收藏
页码:361 / 374
页数:13
相关论文
共 50 条
  • [41] Exponentially-fitted explicit Runge-Kutta methods
    Vanden Berghe, G
    De Meyer, H
    Van Daele, M
    Van Hecke, T
    COMPUTER PHYSICS COMMUNICATIONS, 1999, 123 (1-3) : 7 - 15
  • [42] INTERNAL ERROR PROPAGATION IN EXPLICIT RUNGE-KUTTA METHODS
    Ketcheson, David I.
    Loczi, Lajos
    Parsani, Matteo
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (05) : 2227 - 2249
  • [43] NOTE ON EXPLICIT PARALLEL MULTISTEP RUNGE-KUTTA METHODS
    VANDERHOUWEN, PJ
    SOMMEIJER, BP
    VANMOURIK, PA
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1989, 27 (03) : 411 - 420
  • [44] BLOCK EMBEDDED EXPLICIT RUNGE-KUTTA METHODS.
    Cash, J.R.
    Computers & mathematics with applications, 1985, 11 (04): : 395 - 409
  • [45] Optimized Two-Stage Implicit Runge-Kutta Methods for the Numerical Solution of Problems with Oscillatory Solutions
    Tselios, N. G.
    Anastassi, Z. A.
    Simos, T. E.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 2248 - +
  • [46] ON IMPLICIT RUNGE-KUTTA METHODS WITH HIGHER DERIVATIVES
    GEKELER, EW
    BIT, 1988, 28 (04): : 809 - 816
  • [47] Continuous stage stochastic Runge-Kutta methods
    Xin, Xuan
    Qin, Wendi
    Ding, Xiaohua
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [48] Explicit Runge-Kutta methods for the integration of rate-type constitutive equations
    Hiley, R. A.
    Rouainia, M.
    COMPUTATIONAL MECHANICS, 2008, 42 (01) : 53 - 66
  • [49] A CLASS OF IMPLICIT-EXPLICIT TWO-STEP RUNGE-KUTTA METHODS
    Zharovsky, Evgeniy
    Sandu, Adrian
    Zhang, Hong
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (01) : 321 - 341
  • [50] Explicit pseudo two-step Runge-Kutta methods for parallel computers
    Cong, NH
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1999, 73 (01) : 77 - 91