Transversely isotropic nonlinear magneto-active elastomers

被引:1
|
作者
Roger Bustamante
机构
[1] Universidad de Chile,Departamento de Ingeniería Mecánica
来源
Acta Mechanica | 2010年 / 210卷
关键词
Energy Function; Isotropic Material; Simple Shear; Isotropic Case; Maxwell Stress;
D O I
暂无
中图分类号
学科分类号
摘要
Magneto-active elastomers are smart materials composed of a rubber-like matrix material containing a distribution of magneto active particles. The large elastic deformations possible in the rubber-like matrix allow the mechanical properties of magneto-active elastomers to be changed significantly by the application of external magnetic fields. In this paper, we provide a theoretical basis for the description of the nonlinear properties of a particular class of these materials, namely transversely isotropic magneto-active elastomers. The transversely isotropic character of these materials is produced by the application of a magnetic field during the curing process, when the magneto active particles are distributed within the rubber. As a result the particles are aligned in chains that generated a preferred direction in the material. Available experimental data suggest that this enhances the stiffness of the material in the presence of an external magnetic field by comparison with the situation in which no external field is applied during curing, which leads to an essentially random (isotropic) distribution of particles. Herein, we develop a general form of the constitutive law for such magnetoelastic solids. This is then used in the solution of two simple problems involving homogeneous deformations, namely simple shear of a slab and simple tension of a cylinder. Using these results and the experimental available data we develop a prototype constitutive equation, which is used in order to solve two boundary-value problems involving non-homogeneous deformations—the extension and inflation of a circular cylindrical tube and the extension and torsion of a solid circular cylinder.
引用
收藏
页码:183 / 214
页数:31
相关论文
共 50 条
  • [21] Development of a small-deformation material model for an isotropic magneto-active elastomer
    Alireza Beheshti
    Ramin Sedaghati
    Subhash Rakheja
    Acta Mechanica, 2020, 231 : 2287 - 2301
  • [22] A Finite Element Framework for Magneto-Actuated Large Deformation and Instability of Slender Magneto-Active Elastomers
    Liu, Yin
    Chen, Shoue
    Tant, Xiaobo
    Cao, Changyong
    INTERNATIONAL JOURNAL OF APPLIED MECHANICS, 2020, 12 (01)
  • [23] Transversely isotropic non-linear electro-active elastomers
    R. Bustamante
    Acta Mechanica, 2009, 206 : 237 - 259
  • [24] Development of a small-deformation material model for an isotropic magneto-active elastomer
    Beheshti, Alireza
    Sedaghati, Ramin
    Rakheja, Subhash
    ACTA MECHANICA, 2020, 231 (06) : 2287 - 2301
  • [25] A new method to characterize the nonlinear magneto-viscoelasticity behavior of magneto-active elastomers under large amplitude oscillatory axial (LAOA) loading
    Hossein Vatandoost
    Ramin Sedaghati
    Subhash Rakheja
    Nonlinear Dynamics, 2024, 112 : 3319 - 3356
  • [26] Transversely isotropic non-linear electro-active elastomers
    Bustamante, R.
    ACTA MECHANICA, 2009, 206 (3-4) : 237 - 259
  • [27] Nonreciprocal scattering by stacked nonlinear magneto-active semiconductor layers
    Shramkova, O. V.
    Schuchinsky, A. G.
    PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS, 2014, 12 (04) : 319 - 329
  • [28] A new method to characterize the nonlinear magneto-viscoelasticity behavior of magneto-active elastomers under large amplitude oscillatory axial (LAOA) loading
    Vatandoost, Hossein
    Sedaghati, Ramin
    Rakheja, Subhash
    NONLINEAR DYNAMICS, 2024, 112 (05) : 3319 - 3356
  • [29] Field-induced interactions in magneto-active elastomers-A comparison of experiments and simulations
    Metsch, P.
    Schmidt, H.
    Sindersberger, D.
    Kalina, K. A.
    Brummund, J.
    Auernhammer, G. K.
    Monkman, G. J.
    Kastner, M.
    SMART MATERIALS AND STRUCTURES, 2020, 29 (08)
  • [30] Effect of microstructure evolution on the mechanical behavior of magneto-active elastomers with different matrix stiffness
    Roghani, Mehran
    Romeis, Dirk
    Saphiannikova, Marina
    SOFT MATTER, 2023, 19 (33) : 6387 - 6398