A Quaternionic Analogue of the Segal-Bargmann Transform

被引:24
|
作者
Diki, K. [1 ]
Ghanmi, A. [1 ]
机构
[1] Mohammed V Univ Rabat, PDE & Spectral Geometry, Lab Anal & Applicat, URAC 03,Dept Math,Fac Sci, POB 1014, Rabat, Morocco
关键词
Slice regular functions; Slice hyperholomorphic Bargmann-Fock space; Quaternionic Segal-Bargmann transform; Left one-dimensional quaternionic Fourier transform; REGULAR FUNCTIONS; SPACE;
D O I
10.1007/s11785-016-0609-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Bargmann-Fock space of slice hyperholomorphic functions is recently introduced by Alpay, Colombo, Sabadini and Salomon. In this paper, we reconsider this space and present a direct proof of its independence of the slice. We also introduce a quaternionic analogue of the classical Segal-Bargmann transform and discuss some of its basic properties. The explicit expression of its inverse is obtained and the connection to the left one-dimensional quaternionic Fourier transform is given.
引用
收藏
页码:457 / 473
页数:17
相关论文
共 50 条