Quantum Mechanical Unbounded Operators and Constructive Mathematics – a Rejoinder to Bridges

被引:0
|
作者
Geoffrey Hellman
机构
[1] University of Minnesota,Department of Philosophy
来源
关键词
Quantum Mechanic; Mathematical Representation; Unbounded Operator; Quantum Phenomenon; Philosophical Position;
D O I
暂无
中图分类号
学科分类号
摘要
As argued in Hellman (1993), the theorem of Pour-El and Richards (1983) can be seen by the classicist as limiting constructivist efforts to recover the mathematics for quantum mechanics. Although Bridges (1995) may be right that the constructivist would work with a different definition of ‘closed operator’, this does not affect my point that neither the classical unbounded operators standardly recognized in quantum mechanics nor their restrictions to constructive arguments are recognizable as objects by the constructivist. Constructive substitutes that may still be possible necessarily involve additional ‘incompleteness’ in the mathematical representation of quantum phenomena. Concerning a second line of reasoning in Hellman (1993), its import is that constructivist practice is consistent with a ‘liberal’ stance but not with a ‘radical’, verificationist philosophical position. Whether such a position is actually espoused by certain leading constructivists, they are invited to clarify.
引用
下载
收藏
页码:121 / 127
页数:6
相关论文
共 50 条