Solving time fractional Burgers’ and Fisher’s equations using cubic B-spline approximation method

被引:0
|
作者
Abdul Majeed
Mohsin Kamran
Muhammad Kashif Iqbal
Dumitru Baleanu
机构
[1] University of Education,Department of Mathematics, Division of Science and Technology
[2] Government College University,Department of Mathematics
[3] Cankaya University,Department of Mathematics, Faculty of Arts and Sciences
[4] China Medical University,Department of Medical Research, China Medical University Hospital
[5] Institute of Space Sciences,undefined
关键词
Cubic B-spline collocation method; Time fractional differential equation; Caputo’s fractional derivative; Stability and convergence; Finite difference formulation;
D O I
暂无
中图分类号
学科分类号
摘要
This article presents a numerical algorithm for solving time fractional Burgers’ and Fisher’s equations using cubic B-spline finite element method. The L1 formula with Caputo derivative is used to discretized the time fractional derivative, whereas the Crank–Nicolson scheme based on cubic B-spline functions is used to interpolate the solution curve along the spatial grid. The numerical scheme has been implemented on three test problems. The obtained results indicate that the proposed method is a good option for solving nonlinear fractional Burgers’ and Fisher’s equations. The error norms L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{2}$\end{document} and L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{\infty }$\end{document} have been calculated to validate the efficiency and accuracy of the presented algorithm.
引用
收藏
相关论文
共 50 条
  • [31] Approximation of Caputo time-fractional diffusion equation using redefined cubic exponential B-spline collocation technique
    Tamsir, Mohammad
    Dhiman, Neeraj
    Nigam, Deependra
    Chauhan, Anand
    [J]. AIMS MATHEMATICS, 2021, 6 (04): : 3805 - 3820
  • [32] Numerical approximation of inhomogeneous time fractional Burgers-Huxley equation with B-spline functions and Caputo derivative
    Majeed, Abdul
    Kamran, Mohsin
    Asghar, Noreen
    Baleanu, Dumitru
    [J]. ENGINEERING WITH COMPUTERS, 2022, 38 (SUPPL 2) : 885 - 900
  • [33] A modified trigonometric cubic B-spline collocation technique for solving the time-fractional diffusion equation
    Dhiman, Neeraj
    Huntul, M. J.
    Tamsir, Mohammad
    [J]. ENGINEERING COMPUTATIONS, 2021, 38 (07) : 2921 - 2936
  • [34] Numerical approach for solving diffusion problems using cubic B-spline collocation method
    Gupta, Bharti
    Kukreja, V. K.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (04) : 2087 - 2099
  • [35] On the Numerical Solution of Singular Lane–Emden Type Equations Using Cubic B-spline Approximation
    Aminikhah H.
    Kazemi S.
    [J]. International Journal of Applied and Computational Mathematics, 2017, 3 (2) : 703 - 712
  • [36] A fourth-order B-spline collocation method for nonlinear Burgers–Fisher equation
    Aditi Singh
    Sumita Dahiya
    S. P. Singh
    [J]. Mathematical Sciences, 2020, 14 : 75 - 85
  • [37] Trigonometric tension B-spline collocation approximations for time fractional Burgers' equation
    Singh, Brajesh Kumar
    Gupta, Mukesh
    [J]. JOURNAL OF OCEAN ENGINEERING AND SCIENCE, 2024, 9 (05) : 508 - 516
  • [38] A Galerkin Solution for Burgers' Equation Using Cubic B-Spline Finite Elements
    Soliman, A. A.
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [39] Numerical solution of fractional differential equations by using fractional B-spline
    Jafari, Hossein
    Khalique, Chaudry M.
    Ramezani, Mohammad
    Tajadodi, Haleh
    [J]. CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2013, 11 (10): : 1372 - 1376
  • [40] Numerical Solutions of Third-Order Time-Fractional Differential Equations Using Cubic B-Spline Functions
    Abbas, Muhammad
    Bibi, Afreen
    Alzaidi, Ahmed S. M.
    Nazir, Tahir
    Majeed, Abdul
    Akram, Ghazala
    [J]. FRACTAL AND FRACTIONAL, 2022, 6 (09)