Möbius geometry;
Isoparametric hypersurface;
Principal curvature;
53A30;
53C21;
53C40;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
A hypersurface x : M → Sn+1
without umbilic point is called a Möbius isoparametric hypersurface if its Möbius form Φ = −ρ−2∑i(ei(H) + ∑j(hij−Hδij)ej(log ρ))θi vanishes and its Möbius shape operator \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ {\Bbb {S}}$$\end{document} = ρ−1(S−Hid) has constant eigenvalues. Here {ei} is a local orthonormal basis for I = dx·dx with dual basis {θi}, II = ∑ijhijθi⊗θi is the second fundamental form, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$H = {1 \over n}\sum\nolimits_i {h_{ii} ,\rho^2 = {n \over {n - 1}}( {|| II ||^2 - nH^2 } )}$$\end{document} and S is the shape operator of x. It is clear that any conformal image of a (Euclidean) isoparametric hypersurface in Sn+1
is a Möbius isoparametric hypersurface, but the converse is not true. In this paper we classify all Möbius isoparametric hypersurfaces in Sn+1
with two distinct principal curvatures up to Möbius transformations. By using a theorem of Thorbergsson [1] we also show that the number of distinct principal curvatures of a compact Möbius isoparametric hypersurface embedded in Sn+1 can take only the values 2, 3, 4, 6.
机构:
Zhengzhou Normal Univ, Sch Math & Stat, Zhengzhou 450044, Henan, Peoples R ChinaZhengzhou Normal Univ, Sch Math & Stat, Zhengzhou 450044, Henan, Peoples R China
Dong, Peilong
Chen, Yali
论文数: 0引用数: 0
h-index: 0
机构:
Anhui Normal Univ, Sch Math & Stat, Wuhu 241000, Anhui, Peoples R ChinaZhengzhou Normal Univ, Sch Math & Stat, Zhengzhou 450044, Henan, Peoples R China