Orthogonal Polynomial Wavelets

被引:0
|
作者
Bernd Fischer
Woula Themistoclakis
机构
[1] Medical University of Lübeck,Institute of Mathematics
[2] Università degli Studi della Basilicata,Dipartimento di Matematica
来源
Numerical Algorithms | 2002年 / 30卷
关键词
Weight Function; Unify Approach; Scaling Function; Reconstruction Scheme; Computable Characterization;
D O I
暂无
中图分类号
学科分类号
摘要
Recently Fischer and Prestin presented a unified approach for the construction of polynomial wavelets. In particular, they characterized those parameter sets which lead to orthogonal scaling functions. Here, we extend their results to the wavelets. We work out necessary and sufficient conditions for the wavelets to be orthogonal to each other. Furthermore, we show how these computable characterizations lead to attractive decomposition and reconstruction schemes. The paper concludes with a study of the special case of Bernstein–Szegö weight functions.
引用
收藏
页码:37 / 58
页数:21
相关论文
共 50 条
  • [21] PERIODIC ORTHOGONAL SPLINES AND WAVELETS
    KOH, YW
    LEE, SL
    TAN, HH
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1995, 2 (03) : 201 - 218
  • [22] Symmetric nearly orthogonal and orthogonal nearly symmetric wavelets
    Abdelnour, AF
    Selesnick, IW
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2004, 29 (2C) : 3 - 16
  • [23] Some remarks on orthogonal and bi-orthogonal wavelets
    LemarieRieusset, PG
    COMPUTATIONAL & APPLIED MATHEMATICS, 1996, 15 (02): : 125 - 137
  • [24] Construction of nearly orthogonal interpolating wavelets
    Shui, PL
    Bao, Z
    SIGNAL PROCESSING, 1999, 79 (03) : 289 - 300
  • [25] Orthogonal quincunx wavelets with fractional orders
    Feilner, M
    Jacob, M
    Unser, M
    2001 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL I, PROCEEDINGS, 2001, : 606 - 609
  • [26] A NOTE ON ORTHONORMAL POLYNOMIAL BASES AND WAVELETS
    OFFIN, D
    OSKOLKOV, K
    CONSTRUCTIVE APPROXIMATION, 1993, 9 (2-3) : 319 - 325
  • [27] Conversion between orthogonal and biorthogonal wavelets
    Tian, J
    Wells, RO
    WAVELET ANALYSIS AND MULTIRESOLUTION METHODS, PROCEEDINGS, 2000, 212 : 367 - 378
  • [28] Orthogonal wavelets analysis of electroanalytical signals
    Lu, XQ
    Mo, JY
    Yang, C
    Kang, JW
    Gao, JZ
    ANALYTICAL LETTERS, 2000, 33 (06) : 1167 - 1186
  • [29] ORTHOGONAL POLYNOMIAL REGRESSION
    NARULA, SC
    INTERNATIONAL STATISTICAL REVIEW, 1979, 47 (01) : 31 - 36
  • [30] ORTHOGONAL POLYNOMIAL BASES
    CHANTURI.ZA
    DOKLADY AKADEMII NAUK SSSR, 1973, 208 (04): : 785 - 786