Orthogonal Polynomial Wavelets

被引:0
|
作者
Bernd Fischer
Woula Themistoclakis
机构
[1] Medical University of Lübeck,Institute of Mathematics
[2] Università degli Studi della Basilicata,Dipartimento di Matematica
来源
Numerical Algorithms | 2002年 / 30卷
关键词
Weight Function; Unify Approach; Scaling Function; Reconstruction Scheme; Computable Characterization;
D O I
暂无
中图分类号
学科分类号
摘要
Recently Fischer and Prestin presented a unified approach for the construction of polynomial wavelets. In particular, they characterized those parameter sets which lead to orthogonal scaling functions. Here, we extend their results to the wavelets. We work out necessary and sufficient conditions for the wavelets to be orthogonal to each other. Furthermore, we show how these computable characterizations lead to attractive decomposition and reconstruction schemes. The paper concludes with a study of the special case of Bernstein–Szegö weight functions.
引用
收藏
页码:37 / 58
页数:21
相关论文
共 50 条
  • [1] Orthogonal polynomial wavelets
    Fischer, B
    Themistoclakis, W
    NUMERICAL ALGORITHMS, 2002, 30 (01) : 37 - 58
  • [2] Orthogonal polynomials and the construction of piecewise polynomial smooth wavelets
    Donovan, GC
    Geronimo, JS
    Hardin, DP
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1999, 30 (05) : 1029 - 1056
  • [3] A recursive procedure to obtain a class of orthogonal polynomial wavelets
    Moncayo, M.
    Yanez, R. J.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2008, 77 (2-3) : 266 - 273
  • [4] CONSTRUCTION OF COMPACTLY SUPPORTED BIVARIATE ORTHOGONAL WAVELETS BY UNIVARIATE ORTHOGONAL WAVELETS
    杨建伟
    李落清
    唐远炎
    ActaMathematicaScientia, 2005, (02) : 233 - 242
  • [5] Construction of compactly supported bivariate orthogonal wavelets by univariate orthogonal wavelets
    Yang, JW
    Li, LQ
    Tang, YY
    ACTA MATHEMATICA SCIENTIA, 2005, 25 (02) : 233 - 242
  • [6] Polynomial wavelets on the interval
    Kilgore, T
    Prestin, J
    CONSTRUCTIVE APPROXIMATION, 1996, 12 (01) : 95 - 110
  • [7] Orthogonal decompositions for wavelets
    Kubrusly, Carlos S.
    Levan, Nhan
    APPLIED MATHEMATICS LETTERS, 2009, 22 (08) : 1286 - 1291
  • [8] Wavelets and local polynomial approximation
    Katkovnik, V
    PROCEEDINGS OF THE IEEE-SP INTERNATIONAL SYMPOSIUM ON TIME-FREQUENCY AND TIME-SCALE ANALYSIS, 1996, : 237 - 240
  • [9] Wavelets based on orthogonal polynomials
    Fischer, B
    Prestin, J
    MATHEMATICS OF COMPUTATION, 1997, 66 (220) : 1593 - 1618
  • [10] Polynomial mechanics via wavelets
    Fedorova, AN
    Zeitlin, MG
    CONTROL OF OSCILLATIONS AND CHAOS - 1997 1ST INTERNATIONAL CONFERENCE, PROCEEDINGS, VOLS 1-3, 1997, : 159 - 160