Stability analysis of HIV/AIDS epidemic model with nonlinear incidence and treatment

被引:0
|
作者
Jianwen Jia
Gailing Qin
机构
[1] Shanxi Normal University,School of Mathematical and Computer Science
关键词
HIV/AIDS epidemic model; nonlinear incidence; basic reproduction number; global stability; geometric approach;
D O I
暂无
中图分类号
学科分类号
摘要
An HIV/AIDS epidemic model with general nonlinear incidence rate and treatment is formulated. The basic reproductive number ℜ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Re_{0}$\end{document} is obtained by use of the method of the next generating matrix. By carrying out an analysis of the model, we study the stability of the disease-free equilibrium and the unique endemic equilibrium by using the geometric approach for ordinary differential equations. Numerical simulations are given to show the effectiveness of the main results.
引用
收藏
相关论文
共 50 条
  • [1] Stability analysis of HIV/AIDS epidemic model with nonlinear incidence and treatment
    Jia, Jianwen
    Qin, Gailing
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [2] Stability analysis of an HIV/AIDS epidemic model with treatment
    Cai, Liming
    Li, Xuezhi
    Ghosh, Mini
    Guo, Baozhu
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 229 (01) : 313 - 323
  • [3] Analysis of an HIV/AIDS treatment model with a nonlinear incidence
    Cai, Liming
    Wu, Jingang
    [J]. CHAOS SOLITONS & FRACTALS, 2009, 41 (01) : 175 - 182
  • [4] Modelling and stability of HIV/AIDS epidemic model with treatment
    Huo, Hai-Feng
    Chen, Rui
    Wang, Xun-Yang
    [J]. APPLIED MATHEMATICAL MODELLING, 2016, 40 (13-14) : 6550 - 6559
  • [5] Analysis of a delayed HIV/AIDS epidemic model with saturation incidence
    Cai L.
    Li X.
    Yu J.
    [J]. Journal of Applied Mathematics and Computing, 2008, 27 (1-2) : 365 - 377
  • [6] Analysis of an extended HIV/AIDS epidemic model with treatment
    Cai, Liming
    Guo, Shuli
    Wang, Shuping
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 236 : 621 - 627
  • [7] Stability and bifurcation of an SIR epidemic model with nonlinear incidence and treatment
    Li, Xue-Zhi
    Li, Wen-Sheng
    Ghosh, Mini
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2009, 210 (01) : 141 - 150
  • [8] Analysis of an HIV/AIDS Model with Time Delay and Nonlinear Incidence
    Zou, Qin
    Gao, Shujing
    Wang, Min
    [J]. PROCEEDINGS OF THE 7TH CONFERENCE ON BIOLOGICAL DYNAMIC SYSTEM AND STABILITY OF DIFFERENTIAL EQUATION, VOLS I AND II, 2010, : 474 - 478
  • [9] Stability analysis and optimal control of a fractional HIV-AIDS epidemic model with memory and general incidence rate
    Adnane Boukhouima
    El Mehdi Lotfi
    Marouane Mahrouf
    Silvério Rosa
    Delfim F. M. Torres
    Noura Yousfi
    [J]. The European Physical Journal Plus, 136
  • [10] Stability analysis and optimal control of a fractional HIV-AIDS epidemic model with memory and general incidence rate
    Boukhouima, Adnane
    Lotfi, El Mehdi
    Mahrouf, Marouane
    Rosa, Silverio
    Torres, Delfim F. M.
    Yousfi, Noura
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (01):