Boolean interpretation, matching, and ranking of natural language queries in product selection systems

被引:0
|
作者
Moulton, Matthew [1 ]
Ng, Yiu-Kai [1 ]
机构
[1] Brigham Young Univ, Comp Sci Dept, 3361 TMCB, Provo, UT 84602 USA
关键词
Natural language query; Interpretation; Matching; Ranking; Data retrieval; SIMILARITY; RETRIEVAL;
D O I
10.1007/s10791-024-09432-x
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
E-commerce is a massive sector in the US economy, generating $767.7 billion in revenue in 2021. E-commerce sites maximize their revenue by helping customers find, examine, and purchase products. To help users easily find the most relevant products in the database for their individual needs, e-commerce sites are equipped with a product retrieval system. Many of these modern retrieval systems parse user-specified constraints or keywords embedded in a simple natural language query, which is generally easier and faster for the customer to specify their needs than navigating a product specification form, and does not require the seller to design or develop such a form. These natural language product retrieval systems, however, suffer from low relevance in retrieved products, especially for complex constraints specified on products. The reduced accuracy is in part due to under-utilizing the rich semantics of natural language, specifically queries that include Boolean operators, and lacking of the ranking on partially-matched relevant results that could be of interest to the customers. This undesirable effect costs e-commerce vendors to lose sales on their merchandise. In solving this problem, we propose a novel product retrieval system, called QuePR \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textit{QuePR}}$$\end{document} , that parses arbitrarily simple and complex natural language queries with(out) Boolean operators, utilizes combinatorial numeric and content-based matching to extract relevant products from a database, and ranks retrieved resultant products by relevance before presenting them to the end-user. The advantages of QuePR \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textit{QuePR}}$$\end{document} are its ability to process explicit and implicit Boolean operators in queries, handle natural language queries using similarity measures on partially-matched records, and perform best guess or match on ambiguous or incomplete queries. QuePR \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textit{QuePR}}$$\end{document} is unique, easy to use, and scalable to all product categories. To verify the accuracy of QuePR \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textit{QuePR}}$$\end{document} in retrieving relevant products on different product domains, we have conducted different performance analyses and compared QuePR \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textit{QuePR}}$$\end{document} with other ranking and retrieval systems. The empirical results verify that QuePR \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textit{QuePR}}$$\end{document} outperforms others while maintaining an optimal runtime speed.
引用
收藏
页数:20
相关论文
共 26 条
  • [21] AN ANALYSIS OF ILL-FORMED INPUT IN NATURAL-LANGUAGE QUERIES TO DOCUMENT-RETRIEVAL SYSTEMS
    YOUNG, CW
    EASTMAN, CM
    OAKMAN, RL
    [J]. INFORMATION PROCESSING & MANAGEMENT, 1991, 27 (06) : 615 - 622
  • [22] Evaluation of Natural Language Processing (NLP) systems to annotate drug product labeling with MedDRA terminology
    Ly, Thomas
    Pamer, Carol
    Dang, Oanh
    Brajovic, Sonja
    Haider, Shahrukh
    Botsis, Taxiarchis
    Milward, David
    Winter, Andrew
    Lu, Susan
    Ball, Robert
    [J]. JOURNAL OF BIOMEDICAL INFORMATICS, 2018, 83 : 73 - 86
  • [23] Ribosomal production and in vitro selection of natural product-like peptidomimetics: The FIT and RaPID systems
    Hipolito, Christopher J.
    Suga, Hiroaki
    [J]. CURRENT OPINION IN CHEMICAL BIOLOGY, 2012, 16 (1-2) : 196 - 203
  • [24] Leveraging Natural Language Processing for enhanced remote troubleshooting in Product-Service Systems: A case study
    Sala, Roberto
    Pirola, Fabiana
    Pezzotta, Giuditta
    Cavalieri, Sergio
    [J]. 5TH INTERNATIONAL CONFERENCE ON INDUSTRY 4.0 AND SMART MANUFACTURING, ISM 2023, 2024, 232 : 1259 - 1268
  • [25] Triple Bottom Line impacts of traditional Product-Service Systems models: Myth or truth? A Natural Language Understanding approach
    Pacheco, Diego Augusto de Jesus
    Caten, Carla Schwengber ten
    Jung, Carlos Fernando
    Pergher, Isaac
    Hunt, Julian David
    [J]. ENVIRONMENTAL IMPACT ASSESSMENT REVIEW, 2022, 96
  • [26] On the Design and Topology Selection of Permanent Magnet Synchronous Generators for Natural Impedance Matching in Small-Scale Uncontrolled Passive Wind Generator Systems
    Labuschagne, Casper J. J.
    Kamper, Maarten J.
    [J]. ENERGIES, 2022, 15 (05)