Investigation of Intramuscular Processes by Spectral Analysis of Mechanomyograms

被引:0
|
作者
E. M. Timanin
机构
[1] Russian Academy of Sciences,Institute of Applied Physics
来源
Biomedical Engineering | 2021年 / 55卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The study addressed the problem of obtaining information on the operation of motor units in the biceps brachii muscle by recording and spectral processing of its mechanomyograms during maintenance of fatiguing isometric tension. The following spectral characteristics of mechanomyograms were determined: total power in the range 1-60 Hz and the percentage of power in the subranges 1-20, 20-40, and 40-60 Hz. Stereotypes in the operation of motor units were not observed in different traces. The possibility of obtaining useful information by analyzing changes in the entire set of parameters of individual traces was evaluated.
引用
收藏
页码:116 / 120
页数:4
相关论文
共 50 条
  • [11] Spectral analysis and a class of nonstationary processes
    Rosenblatt, M
    RECENT ADVANCES AND TRENDS IN NONPARAMETRIC STATISTICS, 2003, : 447 - 450
  • [12] Spectral analysis for intrinsic time processes
    Ishioka, Takahide
    Kawamura, Shunsuke
    Amano, Tomoyuki
    Taniguchi, Masanobu
    STATISTICS & PROBABILITY LETTERS, 2009, 79 (23) : 2389 - 2396
  • [13] Spectral micromagnetic analysis of switching processes
    d'Aquino, M.
    Serpico, C.
    Bertotti, G.
    Schrefl, T.
    Mayergoyz, I. D.
    JOURNAL OF APPLIED PHYSICS, 2009, 105 (07)
  • [14] ADAPTIVE SPECTRAL ANALYSIS OF RANDOM PROCESSES AND FIELDS
    KOZUBSKAYA, GI
    KONYAEV, KV
    IZVESTIYA AKADEMII NAUK SSSR FIZIKA ATMOSFERY I OKEANA, 1977, 13 (01): : 61 - 71
  • [15] Spectral Analysis for Some Multifractional Gaussian Processes
    Karol, A., I
    Nazarov, A., I
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2021, 28 (04) : 488 - 500
  • [16] CROSS SPECTRAL-ANALYSIS OF NONSTATIONARY PROCESSES
    WHITE, LB
    BOASHASH, B
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (04) : 830 - 835
  • [18] Spectral analysis for processes with almost periodic covariances
    Rosenblatt, Murray
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (12) : 3608 - 3612
  • [19] Quantile spectral processes: Asymptotic analysis and inference
    Kley, Tobias
    Volgushev, Stanislav
    Dette, Holger
    Hallin, Marc
    BERNOULLI, 2016, 22 (03) : 1770 - 1807
  • [20] Spectral Analysis for Some Multifractional Gaussian Processes
    A. I. Karol
    A. I. Nazarov
    Russian Journal of Mathematical Physics, 2021, 28 : 488 - 500