Positive Schur properties in spaces of regular operators

被引:0
|
作者
Pedro Tradacete
机构
[1] Universidad Carlos III de Madrid,Mathematics Department
来源
Positivity | 2015年 / 19卷
关键词
Banach lattice; Positive Schur property; Positive Grothendieck property; Spaces of regular operators; Fremlin tensor product; 46B42; 46A32; 47B65;
D O I
暂无
中图分类号
学科分类号
摘要
Properties of Schur type for Banach lattices of regular operators and tensor products are analyzed. It is shown that the dual positive Schur property behaves well with respect to Fremlin’s projective tensor product, which allows us to construct new examples of spaces with this property. Similar results concerning the positive Grothendieck property are also presented.
引用
收藏
页码:305 / 316
页数:11
相关论文
共 50 条
  • [1] Positive Schur properties in spaces of regular operators
    Tradacete, Pedro
    [J]. POSITIVITY, 2015, 19 (02) : 305 - 316
  • [2] The positive Schur property on positive projective tensor products and spaces of regular multilinear operators
    Geraldo Botelho
    Qingying Bu
    Donghai Ji
    Khazhak Navoyan
    [J]. Monatshefte für Mathematik, 2022, 197 : 565 - 578
  • [3] The positive Schur property on positive projective tensor products and spaces of regular multilinear operators
    Botelho, Geraldo
    Bu, Qingying
    Ji, Donghai
    Navoyan, Khazhak
    [J]. MONATSHEFTE FUR MATHEMATIK, 2022, 197 (04): : 565 - 578
  • [4] ξ-completely continuous operators and ξ-Schur Banach spaces
    Causey, R. M.
    Navoyan, K., V
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 276 (07) : 2052 - 2102
  • [5] The centre of spaces of regular operators
    A.W. Wickstead
    [J]. Mathematische Zeitschrift, 2002, 241 : 165 - 179
  • [6] The centre of spaces of regular operators
    Wickstead, AW
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2002, 241 (01) : 165 - 179
  • [7] Positive, and Transfer, Operators on Measurable Spaces: General Properties
    Bezuglyi, Sergey
    Jorgensen, Palle E. T.
    [J]. TRANSFER OPERATORS, ENDOMORPHISMS, AND MEASURABLE PARTITIONS, 2018, 2217 : 23 - 38
  • [8] Equivalence After Extension and Schur Coupling for Relatively Regular Operators
    ter Horst, S.
    Messerschmidt, M.
    Ran, A. C. M.
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2020, 92 (05)
  • [9] Equivalence After Extension and Schur Coupling for Relatively Regular Operators
    S. ter Horst
    M. Messerschmidt
    A. C. M. Ran
    [J]. Integral Equations and Operator Theory, 2020, 92
  • [10] A GENERALIZED SCHUR COMPLEMENT FOR NONNEGATIVE OPERATORS ON LINEAR SPACES
    Friedrich, J.
    Guenther, M.
    Klotz, L.
    [J]. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2018, 12 (03): : 617 - 633