The Partial Fast Fourier Transform

被引:0
|
作者
John C. Bowman
Zayd Ghoggali
机构
[1] University of Alberta,Department of Mathematical and Statistical Sciences
来源
关键词
Partial Fourier transform; Fast Fourier transform; FFT; Discrete Fourier transform; Fractional-phase Fourier transform; Convolution; Implicit dealiasing; 65T50; 86A15;
D O I
暂无
中图分类号
学科分类号
摘要
An efficient algorithm for computing the one-dimensional partial fast Fourier transform fj=∑k=0c(j)e2πijk/NFk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_j=\sum _{k=0}^{c(j)}e^{2\pi ijk/N} F_k$$\end{document} is presented. Naive computation of the partial fast Fourier transform requires O(N2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal O}(N^2)$$\end{document} arithmetic operations for input data of length N. Unlike the standard fast Fourier transform, the partial fast Fourier transform imposes on the frequency variable k a cutoff function c(j) that depends on the space variable j; this prevents one from directly applying standard FFT algorithms. It is shown that the space–frequency domain can be partitioned into rectangular and trapezoidal subdomains over which efficient algorithms can be developed. As in the previous work of Ying and Fomel (Multiscale Model Simul 8(1):110–124, 2009), the contribution from rectangular regions can be reduced to a series of fractional-phase Fourier transforms over squares, each of which can be reduced to a convolution. In this work, we demonstrate that the partial Fourier transform over trapezoidal domains can also be reduced to a convolution. Since the computational complexity of a dealiased convolution of N inputs is O(NlogN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal O}(N\log N)$$\end{document}, a fast algorithm for the partial Fourier transform is achieved, with a lower overall coefficient than obtained by Ying and Fomel.
引用
收藏
页码:1578 / 1593
页数:15
相关论文
共 50 条
  • [21] A fast Fourier transform compiler
    Frigo, M
    ACM SIGPLAN NOTICES, 2004, 39 (04) : 642 - 643
  • [22] THE HEXAGONAL FAST FOURIER TRANSFORM
    Birdsong, James B.
    Rummelt, Nicholas I.
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 1809 - 1812
  • [23] NOTE ON FAST FOURIER TRANSFORM
    RIGLER, AK
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1968, 58 (02) : 274 - &
  • [24] ON COMPUTING FAST FOURIER TRANSFORM
    SINGLETON, RC
    COMMUNICATIONS OF THE ACM, 1967, 10 (10) : 647 - +
  • [25] A parallel Fast Fourier Transform
    Morante, S
    Rossi, G
    Salina, G
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1999, 10 (05): : 781 - 805
  • [26] APPLICATIONS OF FAST FOURIER TRANSFORM
    STOCKHAM, T
    IEEE TRANSACTIONS ON AUDIO AND ELECTROACOUSTICS, 1969, AU17 (02): : 74 - &
  • [27] WHAT IS FAST FOURIER TRANSFORM
    COCHRAN, WT
    COOLEY, JW
    FAVIN, DL
    HELMS, HD
    KAENEL, RA
    LANG, WW
    MALING, GC
    NELSON, DE
    RADER, CM
    WELCH, PD
    IEEE TRANSACTIONS ON AUDIO AND ELECTROACOUSTICS, 1967, AU15 (02): : 45 - +
  • [28] WHAT IS FAST FOURIER TRANSFORM
    COCHRAN, WT
    COOLEY, JW
    FAVIN, DL
    HELMS, HD
    KAENEL, RA
    LANG, WW
    MALING, GC
    NELSON, DE
    RADER, CM
    WELCH, PD
    PROCEEDINGS OF THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, 1967, 55 (10): : 1664 - +
  • [29] Fast Fourier transform compiler
    Frigo, Matteo
    Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI), 1999, : 169 - 180
  • [30] REMARKS ON FAST FOURIER TRANSFORM
    RADER, CM
    IEEE TRANSACTIONS ON AUDIO AND ELECTROACOUSTICS, 1969, AU17 (02): : 72 - &