A Higgs bundle on a Hermitian symmetric space

被引:0
|
作者
Indranil Biswas
Oscar García-Prada
机构
[1] Tata Institute of Fundamental Research,School of Mathematics
[2] Consejo Superior de Investigaciones Científicas,Departamento de Matemáticas
来源
Geometriae Dedicata | 2007年 / 127卷
关键词
Hermitian symmetric space; Higgs bundle; Flat connection; 32M15; 53C07; 32L05;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M := \Gamma\backslash G/K$$\end{document} be the quotient of an irreducible Hermitian symmetric space G/K by a torsionfree cocompact lattice \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma\subset G$$\end{document} . There is a natural flat principal G-bundle over the compact Kähler manifold M which is constructed from the principal Γ-bundle over M defined by the quotient map \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G/K\longrightarrow M$$\end{document} . We construct the principal G-Higgs bundle over M corresponding to this flat G-bundle. This principal G-Higgs bundle is rigid if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm dim}_\mathbb{C} M\,\geq\,2$$\end{document} .
引用
收藏
页码:87 / 98
页数:11
相关论文
共 50 条
  • [41] The vortex filament equation and a semilinear Schrodinger equation in a hermitian symmetric space
    Koiso, N
    OSAKA JOURNAL OF MATHEMATICS, 1997, 34 (01) : 199 - 214
  • [42] Exact solutions of a negative matrix AKNS system with a Hermitian symmetric space
    Shen, Jing
    Geng, Xianguo
    Xue, Bo
    APPLIED MATHEMATICS LETTERS, 2019, 90 : 8 - 14
  • [43] The symplectic area of a geodesic triangle in a Hermitian symmetric space of compact type
    Bech M.A.
    Clerc J.-L.
    Ørsted B.
    São Paulo Journal of Mathematical Sciences, 2018, 12 (2) : 174 - 195
  • [44] Lie bundle on the space of deformed skew-symmetric matrices
    Dobrogowska, Alina
    Golinski, Tomasz
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (11)
  • [45] The canonical bundle of a hermitian manifold
    Bor, G
    Hernández-Lamoneda, L
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 1999, 5 (01): : 187 - 198
  • [46] HERMITIAN BUT NOT SYMMETRIC ]-ALGEBRAS
    WICHMANN, J
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (01): : A142 - A142
  • [47] Spectral analysis and soliton structures for the Hermitian symmetric space Fokas–Lenells equation
    Jia Wang
    Xianguo Geng
    Bo Xue
    Nonlinear Dynamics, 2021, 106 : 907 - 918
  • [48] Modulation instability and dynamics for the Hermitian symmetric space derivative nonlinear Schrodinger equation
    Shen, Jing
    Geng, Xianguo
    Xue, Bo
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 78
  • [49] Characterizations of complex space forms and locally Hermitian symmetric spaces by geodesic tubes
    Djoric, M
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1995, 26 (11): : 1073 - 1086
  • [50] TANGENT BUNDLE ENDOWED WITH QUARTER-SYMMETRIC NON-METRIC CONNECTION ON AN ALMOST HERMITIAN MANIFOLD
    Khan, Mohammad Nazrul Islam
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2020, 35 (01): : 167 - 178