Attention and self-attention in random forests

被引:0
|
作者
Lev V. Utkin
Andrei V. Konstantinov
Stanislav R. Kirpichenko
机构
[1] Peter the Great St.Petersburg Polytechnic University,Higher School of Artificial Intelligence
来源
关键词
Attention mechanism; Random forest; Nadaraya–Watson regression; Quadratic programming; Linear programming; Contamination model;
D O I
暂无
中图分类号
学科分类号
摘要
New models of random forests jointly using the attention and self-attention mechanisms are proposed for solving the regression problem. The models can be regarded as extensions of the attention-based random forest whose idea stems from applying a combination of the Nadaraya–Watson kernel regression and the Huber’s contamination model to random forests. The self-attention aims to capture dependencies of the tree predictions and to remove noise or anomalous predictions in the random forest. The self-attention module is trained jointly with the attention module for computing weights. It is shown that the training process of attention weights is reduced to solving a single quadratic or linear optimization problem. Three modifications of the self-attention are proposed and compared. A specific multi-head self-attention for the random forest is also considered. Heads of the self-attention are obtained by changing its tuning parameters including the kernel parameters and the contamination parameter of models. The proposed modifications of the attention and self-attention combinations are verified and compared with other random forest models by using several datasets. The code implementing the corresponding algorithms is publicly available.
引用
收藏
页码:257 / 273
页数:16
相关论文
共 50 条
  • [21] Self-Attention ConvLSTM for Spatiotemporal Prediction
    Lin, Zhihui
    Li, Maomao
    Zheng, Zhuobin
    Cheng, Yangyang
    Yuan, Chun
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 11531 - 11538
  • [22] Pyramid Self-attention for Semantic Segmentation
    Qi, Jiyang
    Wang, Xinggang
    Hu, Yao
    Tang, Xu
    Liu, Wenyu
    PATTERN RECOGNITION AND COMPUTER VISION, PT I, 2021, 13019 : 480 - 492
  • [23] Self-Attention Technology in Image Segmentation
    Cao, Fude
    Lu, Xueyun
    INTERNATIONAL CONFERENCE ON INTELLIGENT TRAFFIC SYSTEMS AND SMART CITY (ITSSC 2021), 2022, 12165
  • [24] Self-Attention Based Video Summarization
    Li Y.
    Wang J.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2020, 32 (04): : 652 - 659
  • [25] Relative molecule self-attention transformer
    Maziarka, Lukasz
    Majchrowski, Dawid
    Danel, Tomasz
    Gainski, Piotr
    Tabor, Jacek
    Podolak, Igor
    Morkisz, Pawel
    Jastrzebski, Stanislaw
    JOURNAL OF CHEMINFORMATICS, 2024, 16 (01)
  • [26] Deformable Self-Attention for Text Classification
    Ma, Qianli
    Yan, Jiangyue
    Lin, Zhenxi
    Yu, Liuhong
    Chen, Zipeng
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2021, 29 : 1570 - 1581
  • [27] The emergence of clusters in self-attention dynamics
    Geshkovski, Borjan
    Letrouit, Cyril
    Polyanskiy, Yury
    Rigollet, Philippe
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [28] Cascade modeling with multihead self-attention
    Liu, Chaochao
    Wang, Wenjun
    Jiao, Pengfei
    Chen, Xue
    Sun, Yueheng
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [29] Self-Attention Networks for Code Search
    Fang, Sen
    Tan, You-Shuai
    Zhang, Tao
    Liu, Yepang
    INFORMATION AND SOFTWARE TECHNOLOGY, 2021, 134
  • [30] Applying Self-attention for Stance Classification
    Bugueno, Margarita
    Mendoza, Marcelo
    PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS (CIARP 2019), 2019, 11896 : 51 - 61