On Kähler metrisability of two-dimensional complex projective structures

被引:0
|
作者
Thomas Mettler
机构
[1] ETH Zürich,Department of Mathematics
来源
关键词
Complex projective geometry; Cartan geometry; Metrisability; 53A20; 53B10;
D O I
暂无
中图分类号
学科分类号
摘要
We derive necessary conditions for a complex projective structure on a complex surface to arise via the Levi-Civita connection of a (pseudo-)Kähler metric. Furthermore we show that the (pseudo-)Kähler metrics defined on some domain in the projective plane which are compatible with the standard complex projective structure are in one-to-one correspondence with the hermitian forms on C3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}^3$$\end{document} whose rank is at least two. This is achieved by prolonging the relevant finite-type first order linear differential system to closed form. Along the way we derive the complex projective Weyl and Liouville curvature using the language of Cartan geometries.
引用
收藏
页码:599 / 616
页数:17
相关论文
共 50 条
  • [21] Finite morphisms of projective and K■hler manifolds
    Thomas PETERNELL
    Science in China(Series A:Mathematics), 2008, (04) : 685 - 694
  • [22] Compact Kähler manifolds with no projective specialization
    Claire Voisin
    Bollettino dell'Unione Matematica Italiana, 2022, 15 : 353 - 364
  • [23] Construction of projective special Kähler manifolds
    Mauro Mantegazza
    Annali di Matematica Pura ed Applicata (1923 -), 2021, 200 : 2645 - 2687
  • [24] Virtually abelian Kähler and projective groups
    Oliver Baues
    Johannes Riesterer
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2011, 81 : 191 - 213
  • [25] Canonical Groups for Quantization on the Two-Dimensional Sphere and One-Dimensional Complex Projective Space
    Sumadi, A. H. A.
    Zainuddin, H.
    INTERNATIONAL CONFERENCE ON QUANTUM OPTICS AND QUANTUM INFORMATION (ICQOQI) 2013, 2014, 553
  • [26] Homogeneous 4-Dimensional Kähler–Weyl Structures
    M. Brozos-Vázquez
    E. García-Río
    P. Gilkey
    R. Vázquez-Lorenzo
    Results in Mathematics, 2013, 64 : 357 - 369
  • [27] Finite morphisms of projective and Kähler manifolds
    Thomas Peternell
    Science in China Series A: Mathematics, 2008, 51
  • [28] Transverse Kähler structures on central foliations of complex manifolds
    Hiroaki Ishida
    Hisashi Kasuya
    Annali di Matematica Pura ed Applicata (1923 -), 2019, 198 : 61 - 81
  • [29] Compatible Almost Complex Structures on Quaternion Kähler Manifolds
    D. V. Alekseevsky
    S. Marchiafava
    M. Pontecorvo
    Annals of Global Analysis and Geometry, 1998, 16 : 419 - 444
  • [30] Real projective structures on Riemann surfaces and new hyper-Kähler manifolds
    Sebastian Heller
    manuscripta mathematica, 2023, 171 : 241 - 262