Characterizing pigments with hyperspectral imaging variable false-color composites

被引:0
|
作者
Anita Hayem-Ghez
Elisabeth Ravaud
Clotilde Boust
Gilles Bastian
Michel Menu
Nancy Brodie-Linder
机构
[1] Centre de Recherche et de Restauration des Musées de France,Laboratoire de Chimie Biologique
[2] Université de Cergy Pontoise,Fondation des Sciences du Patrimoine
[3] Université de Cergy Pontoise,UMR8247 CNRS
[4] Paris Sciences et Lettres,ENSCP, IRCP
[5] CEA Saclay,Laboratoire Léon Brillouin
来源
Applied Physics A | 2015年 / 121卷
关键词
Hyperspectral Imaging; Cinnabar; Hyperspectral Data; Blue Pigment; Spectral Angle Mapper;
D O I
暂无
中图分类号
学科分类号
摘要
Hyperspectral imaging has been used for pigment characterization on paintings for the last 10 years. It is a noninvasive technique, which mixes the power of spectrophotometry and that of imaging technologies. We have access to a visible and near-infrared hyperspectral camera, ranging from 400 to 1000 nm in 80–160 spectral bands. In order to treat the large amount of data that this imaging technique generates, one can use statistical tools such as principal component analysis (PCA). To conduct the characterization of pigments, researchers mostly use PCA, convex geometry algorithms and the comparison of resulting clusters to database spectra with a specific tolerance (like the Spectral Angle Mapper tool on the dedicated software ENVI). Our approach originates from false-color photography and aims at providing a simple tool to identify pigments thanks to imaging spectroscopy. It can be considered as a quick first analysis to see the principal pigments of a painting, before using a more complete multivariate statistical tool. We study pigment spectra, for each kind of hue (blue, green, red and yellow) to identify the wavelength maximizing spectral differences. The case of red pigments is most interesting because our methodology can discriminate the red pigments very well—even red lakes, which are always difficult to identify. As for the yellow and blue categories, it represents a good progress of IRFC photography for pigment discrimination. We apply our methodology to study the pigments on a painting by Eustache Le Sueur, a French painter of the seventeenth century. We compare the results to other noninvasive analysis like X-ray fluorescence and optical microscopy. Finally, we draw conclusions about the advantages and limits of the variable false-color image method using hyperspectral imaging.
引用
收藏
页码:939 / 947
页数:8
相关论文
共 50 条
  • [31] ANALYSIS OF CHANGES IN AREA OF CYLINDROCLADIUM BLACK ROT IN PEANUT FIELDS UTILIZING FALSE-COLOR INFRARED PHOTOGRAPHY
    PERRY, BW
    GRIFFIN, GJ
    POWELL, NL
    PLANT DISEASE, 1989, 73 (01) : 42 - 45
  • [32] Color Discrimination Based on Hyperspectral Imaging Method
    Ye Qi
    Wang Yue-ming
    Zhou Shi-yao
    Cheng Xiao-yu
    Jia Jian-xin
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38 (10) : 3310 - 3314
  • [33] Hyperspectral imaging in color vision research: tutorial
    Foster, David H.
    Amano, Kinjiro
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2019, 36 (04) : 606 - 627
  • [34] Using SPOT and Aerial False-Color Infrared (fCIR) Imagery to Verify Floodplain Model Results in West Central Florida
    Karlin, Alvan
    Fulkerson, Mark
    Altman, Gene
    GEOSCIENCES, 2016, 6 (02)
  • [35] False-alarm regulation for target detection in Hyperspectral Imaging
    Frontera-Pons, J.
    Pascal, F.
    Ovarlez, J. P.
    2013 IEEE 5TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP 2013), 2013, : 161 - +
  • [36] Multisensor hyperspectral imaging approach for the microchemical analysis of ultramarine blue pigments
    M. González-Cabrera
    K. Wieland
    E. Eitenberger
    A. Bleier
    L. Brunnbauer
    A. Limbeck
    H. Hutter
    C. Haisch
    B. Lendl
    A. Domínguez-Vidal
    M. J. Ayora-Cañada
    Scientific Reports, 12
  • [37] Multisensor hyperspectral imaging approach for the microchemical analysis of ultramarine blue pigments
    Gonzalez-Cabrera, M.
    Wieland, K.
    Eitenberger, E.
    Bleier, A.
    Brunnbauer, L.
    Limbeck, A.
    Hutter, H.
    Haisch, C.
    Lendl, B.
    Dominguez-Vidal, A.
    Ayora-Canada, M. J.
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [38] Comparison of color imaging vs. hyperspectral imaging for texture classification
    Porebski, Alice
    Alimoussa, Mohamed
    Vandenbroucke, Nicolas
    PATTERN RECOGNITION LETTERS, 2022, 161 : 115 - 121
  • [39] Accuracy of Hyperspectral Imaging Systems for Color and Lighting Research
    Raza, Aiman
    Dumortier, Dominique
    Jost-Boissard, Sophie
    Cauwerts, Coralie
    Dubail, Marie
    LEUKOS, 2023, 19 (01) : 16 - 34
  • [40] Objective Color Classification of Ecstasy Tablets by Hyperspectral Imaging
    Edelman, Gerda
    Lopatka, Martin
    Aalders, Maurice
    JOURNAL OF FORENSIC SCIENCES, 2013, 58 (04) : 881 - 886