Missing not at random in end of life care studies: multiple imputation and sensitivity analysis on data from the ACTION study

被引:0
|
作者
Giulia Carreras
Guido Miccinesi
Andrew Wilcock
Nancy Preston
Daan Nieboer
Luc Deliens
Mogensm Groenvold
Urska Lunder
Agnes van der Heide
Michela Baccini
机构
[1] Oncological Network,Department of Clinical Oncology
[2] Prevention and Research Institute (ISPRO),Department of Public Health
[3] University of Nottingham,Department of Public Health
[4] Lancaster University,Department of Statistics, Computer Science, Applications ‘G. Parenti’ (DISIA)
[5] International Observatory on end of life care,undefined
[6] Erasmus University,undefined
[7] Vrije Universiteit Brussel & Ghent University,undefined
[8] Copenhagen University,undefined
[9] University Clinic for Respiratory and Allergic Diseases,undefined
[10] University of Florence,undefined
关键词
Missing data; MAR; MNAR; Advance care planning; Oncology; Quality of life;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Missing not at random in end of life care studies: multiple imputation and sensitivity analysis on data from the ACTION study
    Carreras, Giulia
    Miccinesi, Guido
    Wilcock, Andrew
    Preston, Nancy
    Nieboer, Daan
    Deliens, Luc
    Groenvold, Mogensm
    Lunder, Urska
    van der Heide, Agnes
    Baccini, Michela
    [J]. BMC MEDICAL RESEARCH METHODOLOGY, 2021, 21 (01)
  • [2] A multiple imputation-based sensitivity analysis approach for data subject to missing not at random
    Hsu, Chiu-Hsieh
    He, Yulei
    Hu, Chengcheng
    Zhou, Wei
    [J]. STATISTICS IN MEDICINE, 2020, 39 (26) : 3756 - 3771
  • [3] Multiple imputation for missing data in longitudinal studies of quality of life
    Fairclough, DL
    [J]. QUALITY OF LIFE RESEARCH, 1997, 6 (7-8) : 100 - 100
  • [4] Multiple imputation of ordinal missing not at random data
    Hammon, Angelina
    [J]. ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2023, 107 (04) : 671 - 692
  • [5] Multiple imputation of ordinal missing not at random data
    Angelina Hammon
    [J]. AStA Advances in Statistical Analysis, 2023, 107 : 671 - 692
  • [6] Sensitivity analysis after multiple imputation under missing at random: a weighting approach
    Carpenter, James R.
    Kenward, Michael G.
    White, Ian R.
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2007, 16 (03) : 259 - 275
  • [7] Sensitivity Analysis of Missing Data: Case Studies Using Model-Based Multiple Imputation
    Zhang, Jie
    [J]. DRUG INFORMATION JOURNAL, 2009, 43 (04): : 475 - 484
  • [8] Sensitivity Analysis of Missing Data: Case Studies Using Model-Based Multiple Imputation
    Jie Zhang
    [J]. Drug information journal : DIJ / Drug Information Association, 2009, 43 (4): : 475 - 484
  • [9] Multiple imputation of binary multilevel missing not at random data
    Hammon, Angelina
    Zinn, Sabine
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2020, 69 (03) : 547 - 564
  • [10] A multiple imputation-based sensitivity analysis approach for regression analysis with an missing not at random covariate
    Hsu, Chiu-Hsieh
    He, Yulei
    Hu, Chengcheng
    Zhou, Wei
    [J]. STATISTICS IN MEDICINE, 2023, 42 (14) : 2275 - 2292