Eulerian time-stepping schemes for the non-stationary Stokes equations on time-dependent domains

被引:0
|
作者
Erik Burman
Stefan Frei
Andre Massing
机构
[1] University College London,Department of Mathematics
[2] University of Konstanz,Department of Mathematics and Statistics
[3] Norwegian University of Science and Technology,Department of Mathematical Sciences
[4] Umeå University,Department of Mathematics and Mathematical Statistics
来源
Numerische Mathematik | 2022年 / 150卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
This article is concerned with the discretisation of the Stokes equations on time-dependent domains in an Eulerian coordinate framework. Our work can be seen as an extension of a recent paper by Lehrenfeld and Olshanskii (ESAIM: M2AN 53(2):585–614, 2019), where BDF-type time-stepping schemes are studied for a parabolic equation on moving domains. For space discretisation, a geometrically unfitted finite element discretisation is applied in combination with Nitsche’s method to impose boundary conditions. Physically undefined values of the solution at previous time-steps are extended implicitly by means of so-called ghost penalty stabilisations. We derive a complete a priori error analysis of the discretisation error in space and time, including optimal L2(L2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2(L^2)$$\end{document}-norm error bounds for the velocities. Finally, the theoretical results are substantiated with numerical examples.
引用
下载
收藏
页码:423 / 478
页数:55
相关论文
共 50 条
  • [31] Stochastic Two-Dimensional Navier–Stokes Equations on Time-Dependent Domains
    Wei Wang
    Jianliang Zhai
    Tusheng Zhang
    Journal of Theoretical Probability, 2022, 35 : 2916 - 2939
  • [32] Adaptive time-stepping schemes for the solution of the Poisson-Nernst-Planck equations
    Yan, David
    Pugh, M. C.
    Dawson, F. P.
    APPLIED NUMERICAL MATHEMATICS, 2021, 163 : 254 - 269
  • [33] A novel Lax–Wendroff type procedure of two-derivative time-stepping schemes for Euler and Navier–Stokes equations
    Qin, Xueyu
    Zhang, Xin
    Yu, Jian
    Yan, Chao
    Communications in Nonlinear Science and Numerical Simulation, 2025, 140
  • [34] Symmetric error estimates for discontinuous Galerkin time-stepping schemes for optimal control problems constrained to evolutionary Stokes equations
    Chrysafinos, Konstantinos
    Karatzas, Efthimios N.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2015, 60 (03) : 719 - 751
  • [35] Symmetric error estimates for discontinuous Galerkin time-stepping schemes for optimal control problems constrained to evolutionary Stokes equations
    Konstantinos Chrysafinos
    Efthimios N. Karatzas
    Computational Optimization and Applications, 2015, 60 : 719 - 751
  • [36] Modelling non-stationary signals by time-dependent AR process with time-varying gain
    Mukhopadhyay, S
    Sircar, P
    IETE JOURNAL OF RESEARCH, 1997, 43 (05) : 351 - 358
  • [37] Partitioned time stepping schemes for the non-stationary dual-fracture-matrix fluid flow model
    Nasu, Nasrin Jahan
    Al Mahbub, Md. Abdullah
    Hussain, Shahid
    Yang, Danping
    Zheng, Haibiao
    APPLIED MATHEMATICAL MODELLING, 2020, 79 : 200 - 229
  • [38] AN EULERIAN FINITE ELEMENT METHOD FOR PDES IN TIME-DEPENDENT DOMAINS
    Lehrenfeld, Christoph
    Olshanskii, Maxim
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2019, 53 (02): : 585 - 614
  • [39] Partitioned time stepping schemes for the non-stationary dual-fracture-matrix fluid flow model
    Nasu, Nasrin Jahan
    Mahbub, Md. Abdullah Al
    Hussain, Shahid
    Yang, Danping
    Zheng, Haibiao
    Zheng, Haibiao (hbzheng@math.ecnu.edu.cn), 1600, Elsevier Inc. (79): : 200 - 229