Unimodular graphs and Eisenstein sums

被引:0
|
作者
Bogdan Nica
机构
[1] Georg-August Universität Göttingen,Mathematisches Institut
[2] McGill University,Department of Mathematics and Statistics
来源
Journal of Algebraic Combinatorics | 2017年 / 45卷
关键词
Sum-products; Isoperimetric constant; Algebraic graphs; Eisenstein sums; Finite valuation rings; 05C50; 05C25; 11T24;
D O I
暂无
中图分类号
学科分类号
摘要
Motivated in part by combinatorial applications to certain sum-product phenomena, we introduce unimodular graphs over finite fields and, more generally, over finite valuation rings. We compute the spectrum of the unimodular graphs, by using Eisenstein sums associated with unramified extensions of such rings. We derive an estimate for the number of solutions to the restricted dot product equation a·b=r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a\cdot b=r$$\end{document} over a finite valuation ring. Furthermore, our spectral analysis leads to the exact value of the isoperimetric constant for half of the unimodular graphs. We also compute the spectrum of Platonic graphs over finite valuation rings, and products of such rings—e.g., Z/(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}/(N)$$\end{document}. In particular, we deduce an improved lower bound for the isoperimetric constant of the Platonic graph over Z/(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}/(N)$$\end{document}.
引用
收藏
页码:423 / 454
页数:31
相关论文
共 50 条
  • [1] Unimodular graphs and Eisenstein sums
    Nica, Bogdan
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2017, 45 (02) : 423 - 454
  • [2] On unimodular graphs
    Akbari, S.
    Kirkland, S. J.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 421 (01) : 3 - 15
  • [3] Eisenstein series and convolution sums
    Zafer Selcuk Aygin
    The Ramanujan Journal, 2019, 48 : 495 - 508
  • [4] Eisenstein series and convolution sums
    Aygin, Zafer Selcuk
    RAMANUJAN JOURNAL, 2019, 48 (03): : 495 - 508
  • [5] UNIMODULAR EQUIVALENCE OF GRAPHS
    MERRIS, R
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1992, 173 : 181 - 189
  • [6] CONVOLUTION SUMS AND THEIR RELATIONS TO EISENSTEIN SERIES
    Kim, Daeyeoul
    Kim, Aeran
    Sankaranarayanan, Ayyadurai
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2013, 50 (04) : 1389 - 1413
  • [7] Gauss and eisenstein sums of order twelve
    Gurak, S
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2003, 46 (03): : 344 - 355
  • [8] Restricted unimodular chordal graphs
    Peled, UN
    Wu, JL
    JOURNAL OF GRAPH THEORY, 1999, 30 (02) : 121 - 136
  • [9] PARKING ON TRANSITIVE UNIMODULAR GRAPHS
    Damron, Michael
    Gravner, Janko
    Junge, Matthew
    Lyu, Hanbaek
    Sivakoff, David
    ANNALS OF APPLIED PROBABILITY, 2019, 29 (04): : 2089 - 2113
  • [10] Distance unimodular equivalence of graphs
    Hou, Yaoping
    Woo, Chingwah
    LINEAR & MULTILINEAR ALGEBRA, 2008, 56 (06): : 611 - 626