Intersection Numbers for Twisted Homology

被引:0
|
作者
Toyoshi Togi
机构
[1] University of Tokyo,Department of Mathematical Science
来源
manuscripta mathematica | 2004年 / 114卷
关键词
Intersection Number; Twisted Homology;
D O I
暂无
中图分类号
学科分类号
摘要
We prove by combinatorial means new formulae for intersection numbers of twisted homology of hyperplane complements, thereby solving a conjecture of Aomoto.
引用
收藏
页码:165 / 176
页数:11
相关论文
共 50 条
  • [31] Twisted homology for the mirabolic nilradical
    Avraham Aizenbud
    Dmitry Gourevitch
    Siddhartha Sahi
    Israel Journal of Mathematics, 2015, 206 : 39 - 88
  • [32] DUALITY IN A TWISTED HOMOLOGY THEORY
    MACALPIN.EA
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1966, 72 (06) : 1051 - &
  • [33] INTERSECTION THEORY FOR TWISTED CYCLES
    KITA, M
    YOSHIDA, M
    MATHEMATISCHE NACHRICHTEN, 1994, 166 : 287 - 304
  • [34] The Twisted Homology of Simplicial Set
    Meng Meng ZHANG
    Jing Yan LI
    Jie WU
    Acta Mathematica Sinica,English Series, 2022, (10) : 1781 - 1802
  • [35] The Twisted Homology of Simplicial Set
    Zhang, Meng Meng
    Li, Jing Yan
    Wu, Jie
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2022, 38 (10) : 1781 - 1802
  • [36] AN INTERSECTION HOMOLOGY OBSTRUCTION TO IMMERSIONS
    HABEGGER, N
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 96 (04) : 693 - 697
  • [37] A Lefschetz duality for intersection homology
    Valette, Guillaume
    GEOMETRIAE DEDICATA, 2014, 169 (01) : 283 - 299
  • [38] Intersection homology with general perversities
    Greg Friedman
    Geometriae Dedicata, 2010, 148 : 103 - 135
  • [39] Intersection homology with general perversities
    Friedman, Greg
    GEOMETRIAE DEDICATA, 2010, 148 (01) : 103 - 135
  • [40] A Lefschetz duality for intersection homology
    Guillaume Valette
    Geometriae Dedicata, 2014, 169 : 283 - 299