Stabilizing the unstable periodic orbits of a chaotic system using model independent adaptive time-delayed controller

被引:0
|
作者
A. Fourati
M. Feki
N. Derbel
机构
[1] École Nationale d’Ingénieurs de Sfax (ENIS),Research Unit ICOS
来源
Nonlinear Dynamics | 2010年 / 62卷
关键词
Chaotic systems; UPO; Chaos control; Time-delayed state feedback; Adaptive control; Sliding mode observer;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we deal with the control of chaotic systems. Knowing that a chaotic attractor contains a myriad of unstable periodic orbits (UPO’s), the aim of our work is to stabilize some of the UPO’s embedded in the chaotic attractor and which have interesting characteristics. First, using the input-to-state linearization method in conjunction with a time-delayed state feedback, we design a control signal that can achieve stabilization. Next, an adaptive time-delayed state feedback is proposed which shows at once efficiency and simplicity and circumvents the construction complexity of the first controller. Finally, we propose a reduced order sliding mode observer to estimate the necessary states for the design of an adaptive time delayed state feedback controller. This last controller has one main advantage, it in fact achieves UPO stabilization without using the system model. The efficacy of the proposed methods is illustrated by numerical simulations onto Chua’s system.
引用
收藏
页码:687 / 704
页数:17
相关论文
共 50 条