Approximation Algorithms for Maximally Balanced Connected Graph Partition

被引:0
|
作者
Yong Chen
Zhi-Zhong Chen
Guohui Lin
Yao Xu
An Zhang
机构
[1] Hangzhou Dianzi University,Department of Mathematics
[2] Tokyo Denki University,Division of Information System Design
[3] University of Alberta,Department of Computing Science
[4] Georgia Southern University,Department of Computer Science
来源
Algorithmica | 2021年 / 83卷
关键词
Graph partition; Induced subgraph; Connected component; Local improvement; Approximation algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
Given a connected graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G = (V, E)$$\end{document}, we seek to partition the vertex set V into k non-empty parts such that the subgraph induced by each part is connected, and the partition is maximally balanced in the way that the maximum cardinality of these k parts is minimized. We refer this problem to as min-max balanced connected graph partition into k parts and denote it as k-BGP. The vertex-weighted version of this problem on trees has been studied since about four decades ago, which admits a linear time exact algorithm. The vertex-weighted 2-BGP and 3-BGP admit a 5/4-approximation and a 3/2-approximation, respectively. When k≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ge 4$$\end{document}, no approximability result exists for k-BGP, i.e., the vertex unweighted variant, except a trivial k-approximation. In this paper, we present another 3/2-approximation for the 3-BGP and then extend it to become a k/2-approximation for k-BGP, for any fixed k≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ge 3$$\end{document}. Furthermore, for 4-BGP, we propose an improved 24/13-approximation. To these purposes, we have designed several local improvement operations, which could find more applications in related graph partition problems.
引用
收藏
页码:3715 / 3740
页数:25
相关论文
共 50 条
  • [31] Sublinear Graph Approximation Algorithms
    Onak, Krzysztof
    PROPERTY TESTING: CURRENT RESEARCH AND SURVEYS, 2010, 6390 : 158 - 166
  • [32] Balanced Graph Partition Refinement using the Graph p-Laplacian
    Simpson, Toby
    Pasadakis, Dimosthenis
    Kourounis, Drosos
    Fujita, Kohei
    Yamaguchi, Takuma
    Ichimura, Tsuyoshi
    Schenk, Olaf
    PROCEEDINGS OF THE PLATFORM FOR ADVANCED SCIENTIFIC COMPUTING CONFERENCE (PASC '18), 2017,
  • [33] CONSTRUCTION OF A MAXIMALLY EDGE-CONNECTED GRAPH WITH PRESCRIBED DEGREES
    WANG, DL
    STUDIES IN APPLIED MATHEMATICS, 1976, 55 (01) : 87 - 92
  • [34] Balanced Partition of a Graph for Football Team Realignment in Ecuador
    Recalde, Diego
    Severin, Daniel
    Torres, Ramiro
    Vaca, Polo
    COMBINATORIAL OPTIMIZATION, ISCO 2016, 2016, 9849 : 357 - 368
  • [35] About randomised distributed graph colouring and graph partition algorithms
    Metivier, Y.
    Robson, J. M.
    Saheb-Djahromi, N.
    Zemmari, A.
    INFORMATION AND COMPUTATION, 2010, 208 (11) : 1296 - 1304
  • [36] Approximation Algorithms for Connected Dominating Sets
    S. Guha
    S. Khuller
    Algorithmica, 2007, 49 : 79 - 79
  • [37] Approximation Algorithms for Connected Dominating Sets
    S. Guha
    S. Khuller
    Algorithmica, 1998, 20 : 374 - 387
  • [38] PARALLEL ALGORITHMS FOR CONNECTED COMPONENTS IN A GRAPH
    KOUBEK, V
    KRSNAKOVA, J
    LECTURE NOTES IN COMPUTER SCIENCE, 1985, 199 : 208 - 217
  • [39] Approximation algorithms for connected dominating sets
    Guha, S
    Khuller, S
    ALGORITHMICA, 1998, 20 (04) : 374 - 387
  • [40] Approximation algorithms for the minimum convex partition problem
    Knauer, Christian
    Spillner, Andreas
    ALGORITHM THEORY - SWAT 2006, PROCEEDINGS, 2006, 4059 : 232 - 241