Given a connected graph G=(V,E)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$G = (V, E)$$\end{document}, we seek to partition the vertex set V into k non-empty parts such that the subgraph induced by each part is connected, and the partition is maximally balanced in the way that the maximum cardinality of these k parts is minimized. We refer this problem to as min-max balanced connected graph partition into k parts and denote it as k-BGP. The vertex-weighted version of this problem on trees has been studied since about four decades ago, which admits a linear time exact algorithm. The vertex-weighted 2-BGP and 3-BGP admit a 5/4-approximation and a 3/2-approximation, respectively. When k≥4\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$k \ge 4$$\end{document}, no approximability result exists for k-BGP, i.e., the vertex unweighted variant, except a trivial k-approximation. In this paper, we present another 3/2-approximation for the 3-BGP and then extend it to become a k/2-approximation for k-BGP, for any fixed k≥3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$k \ge 3$$\end{document}. Furthermore, for 4-BGP, we propose an improved 24/13-approximation. To these purposes, we have designed several local improvement operations, which could find more applications in related graph partition problems.