Multiobjective maximum power tracking control of photovoltaic systems: T-S fuzzy model-based approach

被引:0
|
作者
M. Allouche
K. Dahech
M. Chaabane
机构
[1] University of Sfax,Laboratory of Sciences and Techniques of Automatic Control & Computer Engineering (Lab
来源
Soft Computing | 2018年 / 22卷
关键词
Multiobjective fuzzy tracking control; Maximum power point tracking (MPPT); Linear matrix inequalities (LMIs); Photovoltaic (PV) system; T–S fuzzy model;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents a multiobjective maximum power point tracking (MPPT) control for photovoltaic (PV) system to guarantee both H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{2}$$\end{document} optimal control and H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\infty }$$\end{document} model reference tracking performance simultaneously. First, the Takagi and Sugeno (T–S) fuzzy model is employed to describe the dynamic behavior of DC–DC boost converter. Then, based on this exact T–S fuzzy representation, multiobjective H2/H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{2}/H_{\infty }$$\end{document} MPPT controller is designed to minimize concurrently the H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{2}$$\end{document} tracking error and H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\infty }$$\end{document} disturbance attenuation level for the PV system. A specified T–S reference model is constructed to provide the desired trajectory which must be tracked. An MPP searching algorithm is also added in the global MPPT structure to generate the optimal PV current which is considered as input control for the T–S reference model. Finally, simulation results are given to illustrate the optimal tracking performance of the proposed fuzzy controller even when rapidly changing climatic conditions.
引用
收藏
页码:2121 / 2132
页数:11
相关论文
共 50 条
  • [1] Multiobjective maximum power tracking control of photovoltaic systems: T-S fuzzy model-based approach
    Allouche, M.
    Dahech, K.
    Chaabane, M.
    [J]. SOFT COMPUTING, 2018, 22 (07) : 2121 - 2132
  • [2] Robust Maximum Power Tracking Control of Uncertain Photovoltaic Systems: A Unified T-S Fuzzy Model-Based Approach
    Chiu, Chian-Song
    Ouyang, Ya-Lun
    [J]. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2011, 19 (06) : 1516 - 1526
  • [3] Maximum Power Control of PV Systems via a T-S Fuzzy Model-based Approach
    Chiu, Chian-Song
    Ouyang, Ya-Lun
    Chiang, Teng-Shung
    Liu, Peter
    [J]. ICIEA 2010: PROCEEDINGS OF THE 5TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, VOL 4, 2010, : 468 - +
  • [4] T-S Fuzzy Model Based Maximum Power Point Tracking Control of Photovoltaic System
    Kumar, Avanish
    Vempati, Anurag Sai
    Behera, Laxmidhar
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ - IEEE 2013), 2013,
  • [5] Maximum Power Point Tracking Control of Photovoltaic Systems: A Polynomial Fuzzy Model-Based Approach
    Rakhshan, Mohsen
    Vafamand, Navid
    Khooban, Mohammad-Hassan
    Blaabjerg, Frede
    [J]. IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS, 2018, 6 (01) : 292 - 299
  • [6] Realization of Maximum Power Tracking Approach for Photovoltaic Array Systems Based on T-S Fuzzy Method
    Lian, Kuang-Yow
    Ouyang, Ya-Lun
    Wu, Wei-Lun
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-5, 2008, : 1876 - +
  • [7] Maximum Power Control of Wind Energy Conversation Systems via a T-S Fuzzy Model-based Approach
    Chiu, Chian-Song
    Chiang, Teng-Shung
    Lee, Ya-Ting
    [J]. 2010 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2010), 2010,
  • [8] T-S Fuzzy Maximum Power Point Tracking Control of Photovoltaic conversion System
    Zayani, H.
    Allouche, M.
    Kharrat, M.
    Chaabane, M.
    [J]. 2015 16TH INTERNATIONAL CONFERENCE ON SCIENCES AND TECHNIQUES OF AUTOMATIC CONTROL AND COMPUTER ENGINEERING (STA), 2015, : 534 - 539
  • [9] Multiobjective tracking control design of T-S fuzzy systems: Fuzzy Pareto optimal approach
    Chen, Bor-Sen
    Ho, Shih-Ju
    [J]. FUZZY SETS AND SYSTEMS, 2016, 290 : 39 - 55
  • [10] Robust output tracking CMAC control: The T-S fuzzy model-based approach
    Chiu, CS
    Chiang, TS
    [J]. PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), VOLS 1-5, 2005, : 2290 - 2295