Possible signature of the magnetic fields related to quasi-periodic oscillations observed in microquasars

被引:0
|
作者
Martin Kološ
Arman Tursunov
Zdeněk Stuchlík
机构
[1] Silesian University in Opava,Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The study of quasi-periodic oscillations (QPOs) of X-ray flux observed in the stellar-mass black hole binaries can provide a powerful tool for testing of the phenomena occurring in the strong gravity regime. Magnetized versions of the standard geodesic models of QPOs can explain the observationally fixed data from the three microquasars. We perform a successful fitting of the HF QPOs observed for three microquasars, GRS 1915+105, XTE 1550-564 and GRO 1655-40, containing black holes, for magnetized versions of both epicyclic resonance and relativistic precession models and discuss the corresponding constraints of parameters of the model, which are the mass and spin of the black hole and the parameter related to the external magnetic field. The estimated magnetic field intensity strongly depends on the type of objects giving the observed HF QPOs. It can be as small as 10-5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{-5}$$\end{document} G if electron oscillatory motion is relevant, but it can be by many orders higher for protons or ions (0.02–1 G), or even higher for charged dust or such exotic objects as lighting balls, etc. On the other hand, if we know by any means the magnetic field intensity, our model implies strong limit on the character of the oscillating matter, namely its specific charge.
引用
收藏
相关论文
共 50 条
  • [31] Spectrophotometric observations of quasi-periodic oscillations
    Ilkiewicz, K.
    Drozd, K.
    CONTRIBUTIONS OF THE ASTRONOMICAL OBSERVATORY SKALNATE PLESO, 2014, 43 (03): : 443 - 443
  • [32] QUASI-PERIODIC BEHAVIOR IN GROWTH OSCILLATIONS
    SAVIT, R
    ZIA, RKP
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (15): : L987 - L992
  • [33] QUASI-PERIODIC OSCILLATIONS ON A NONLINEAR TRANSIENT
    FRANCO, H
    PAULETTI, RM
    PHYSICS LETTERS A, 1995, 201 (04) : 281 - 284
  • [34] Fourier methods for quasi-periodic oscillations
    Schilder, Frank
    Vogt, Werner
    Schreiber, Stephan
    Osinga, Hinke M.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2006, 67 (05) : 629 - 671
  • [35] QUASI-PERIODIC OSCILLATIONS IN TT ARIETIS
    HOLLANDER, A
    VANPARADIJS, J
    ASTRONOMY & ASTROPHYSICS, 1992, 265 (01) : 77 - 81
  • [36] General relativity and quasi-periodic oscillations
    Kaaret, P
    Ford, EC
    PROCEEDINGS OF THE FOURTH COMPTON SYMPOSIUM, PTS 1 AND 2: PT 1: THE COMPTON OBSERVATORY IN REVIEW; PT 2: PAPERS AND PRESENTATIONS, 1997, (410): : 703 - 707
  • [37] Quasi-periodic oscillations of perturbed tori
    Parthasarathy, Varadarajan
    Manousakis, Antonios
    Kluzniak, Wlodzimierz
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 458 (01) : 666 - 672
  • [38] Disk instabilities and Quasi-Periodic Oscillations
    Tagger, M.
    Triggering Relativistic Jets, 2007, 27 : 26 - 35
  • [39] QUASI-PERIODIC OSCILLATIONS IN ROBOT DYNAMICS
    STEPAN, G
    HALLER, G
    NONLINEAR DYNAMICS, 1995, 8 (04) : 513 - 528
  • [40] THE QUASI-PERIODIC OSCILLATIONS OF VV PUPPIS
    IMAMURA, JN
    MIDDLEDITCH, J
    SCARGLE, JD
    STEIMANCAMERON, TY
    WHITLOCK, LA
    WOLFF, MT
    WOOD, KS
    ASTROPHYSICAL JOURNAL, 1993, 419 (02): : 793 - 802