Function Theory and Holomorphic Maps on Symmetric Products of Planar Domains

被引:0
|
作者
Debraj Chakrabarti
Sushil Gorai
机构
[1] Central Michigan University,Department of Mathematics
[2] Indian Statistical Institute,Stat
来源
关键词
Dbar-problem; Non-Lipschitz domains; Symmetric products; Proper maps; Boundary regularity; 32A07; 32W05; 32H40;
D O I
暂无
中图分类号
学科分类号
摘要
We show that the ∂¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\partial }$$\end{document}-problem is globally regular on a domain in Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}^n$$\end{document}, which is the n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-fold symmetric product of a smoothly bounded planar domain. Remmert–Stein type theorems are proved for proper holomorphic maps between equidimensional symmetric products and proper holomorphic maps from Cartesian products to symmetric products. It is shown that proper holomorphic maps between equidimensional symmetric products of smooth planar domains are smooth up to the boundary.
引用
收藏
页码:2196 / 2225
页数:29
相关论文
共 50 条