Lyapunov exponents and invariant measures on a projective bundle

被引:0
|
作者
G. S. Osipenko
机构
[1] LomonosovMoscow State University,
来源
Mathematical Notes | 2017年 / 101卷
关键词
Morse spectrum; chain-recurrent set; projective bundle; invariant measure; symbolic image; flow on a graph; averaging with respect to a measure;
D O I
暂无
中图分类号
学科分类号
摘要
A discrete dynamical system generated by a diffeomorphism f on a compact manifold is considered. The Morse spectrum is the limit set of Lyapunov exponents of periodic pseudotrajectories. It is proved that the Morse spectrum coincides with the set of averagings of the function ϕ(x, e) = ln|Df(x)e| over the invariant measures of the mapping induced by the differential Df on the projective bundle.
引用
收藏
页码:666 / 676
页数:10
相关论文
共 50 条
  • [41] SCALE-INVARIANT LYAPUNOV EXPONENTS FOR CLASSICAL HAMILTONIAN-SYSTEMS
    SELIGMAN, TH
    VERBAARSCHOT, JJM
    ZIRNBAUER, MR
    PHYSICS LETTERS A, 1985, 110 (05) : 231 - 234
  • [42] Invariant measure and Lyapunov exponents for birational maps of P2
    Diller, J
    COMMENTARII MATHEMATICI HELVETICI, 2001, 76 (04) : 754 - 780
  • [43] Invariant measures and Kyapunov exponents for stochastic Mathieu system
    Rong, HW
    Meng, G
    Wang, XD
    Xu, W
    Fang, T
    NONLINEAR DYNAMICS, 2002, 30 (04) : 313 - 321
  • [44] Lyapunov Exponents
    Weiss, Christian
    TWISTED TEICHMULLER CURVES, 2014, 2104 : 127 - 133
  • [45] Lyapunov exponents of families of morphisms of metrized vector bundles as functions on the base of the bundle
    Karpuk, M. V.
    DIFFERENTIAL EQUATIONS, 2014, 50 (10) : 1322 - 1328
  • [46] Lyapunov exponents of families of morphisms of metrized vector bundles as functions on the base of the bundle
    M. V. Karpuk
    Differential Equations, 2014, 50 : 1322 - 1328
  • [47] Sum of Lyapunov exponents of the Hodge bundle with respect to the Teichmüller geodesic flow
    Alex Eskin
    Maxim Kontsevich
    Anton Zorich
    Publications mathématiques de l'IHÉS, 2014, 120 : 207 - 333
  • [48] Invariant Measures for Large Automorphism Groups of Projective Surfaces
    Cantat, Serge
    Dujardin, Romain
    TRANSFORMATION GROUPS, 2025, 30 (01) : 75 - 145
  • [49] Invariant Measure and Lyapunov Exponents for two Dimensional Parametrically Excited Random Systems
    Haiwu, Rong
    Wei, Xu
    Tong, Fang
    Ying Yong Li Xue Xue Bao/Chinese Journal of Applied Mechanics, 16 (01): : 108 - 115
  • [50] Green bundles, Lyapunov exponents and regularity along the supports of the minimizing measures
    Arnaud, M. -C.
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2012, 29 (06): : 989 - 1007