RecurrenceOnline: an online analysis tool to determine breast cancer recurrence and hormone receptor status using microarray data

被引:0
|
作者
Balázs Győrffy
Zsombor Benke
András Lánczky
Bálint Balázs
Zoltán Szállási
József Timár
Reinhold Schäfer
机构
[1] Laboratory of Functional Genomics,Research Laboratory for Pediatrics and Nephrology
[2] Charité,2nd Department of Pathology
[3] Hungarian Academy of Sciences,undefined
[4] Pázmány Péter University,undefined
[5] Faculty of Informatic Technology,undefined
[6] Children’s Hospital Informatics Program,undefined
[7] Harvard Medical School,undefined
[8] Semmelweis University,undefined
来源
关键词
Survival analysis; Breast cancer; Prognosis; Bioinformatics; Microarray; Recurrence score; Recurrence risk; Lymph node status;
D O I
暂无
中图分类号
学科分类号
摘要
In the last decades, several gene expression-based predictors of clinical behavior were developed for breast cancer. A common feature of these is the use of multiple genes to predict hormone receptor status and the probability of tumor recurrence, survival or response to chemotherapy. We developed an online analysis tool to compute ER and HER2 status, Oncotype DX 21-gene recurrence score and an independent recurrence risk classification using gene expression data obtained by interrogation of Affymetrix microarray profiles. We implemented rigorous quality control algorithms to promptly exclude any biases related to sample processing, hybridization and scanning. After uploading the raw microarray data, the system performs the complete evaluation automatically and provides a report summarizing the results. The system is accessible online at http://www.recurrenceonline.com. We validated the system using data from 2,472 publicly available microarrays. The validation of the prediction of the 21-gene recurrence score was significant in lymph node negative patients (Cox-Mantel, P = 5.6E-16, HR = 0.4, CI = 0.32–0.5). A correct classification was obtained for 88.5% of ER- and 90.5% of ER + tumors (n = 1,894). The prediction of recurrence risk in all patients by using the mean of the independent six strongest genes (P < 1E-16, HR = 2.9, CI = 2.5–3.3), of the four strongest genes in lymph node negative ER positive patients (P < 1E-16, HR = 2.8, CI = 2.2–3.5) and of the three genes in lymph node positive patients (P = 3.2E-9, HR = 2.5, CI = 1.8–3.4) was highly significant. In summary, we integrated available knowledge in one platform to validate currently used predictors and to provide a global tool for the online determination of different prognostic parameters simultaneously using genome-wide microarrays.
引用
收藏
页码:1025 / 1034
页数:9
相关论文
共 50 条
  • [21] An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients
    Gyoerffy, Balazs
    Lanczky, Andras
    Eklund, Aron C.
    Denkert, Carsten
    Budczies, Jan
    Li, Qiyuan
    Szallasi, Zoltan
    BREAST CANCER RESEARCH AND TREATMENT, 2010, 123 (03) : 725 - 731
  • [22] An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients
    Balazs Györffy
    Andras Lanczky
    Aron C. Eklund
    Carsten Denkert
    Jan Budczies
    Qiyuan Li
    Zoltan Szallasi
    Breast Cancer Research and Treatment, 2010, 123 : 725 - 731
  • [23] Clinicopathological characteristics and prognostic analysis of breast cancer with a hormone receptor status of ER(-)/PR(+)
    Wang, Xinli
    Xue, Yan
    FRONTIERS IN ENDOCRINOLOGY, 2023, 14
  • [24] Hormone receptor status and survival of medullary breast cancer patients
    Aksoy, Asude
    Odabas, Hatice
    Kaya, Serap
    Bozkurt, Oktay
    Degirmenci, Mustafa
    Topcu, Turkan O.
    Aytekin, Aydin
    Arpaci, Erkan
    Avci, Nilufer
    Pilanci, Kezban N.
    Cinkir, Havva Y.
    Bozkaya, Yakup
    Cirak, Yalcin
    Gumus, Mahmut
    SAUDI MEDICAL JOURNAL, 2017, 38 (02) : 156 - 162
  • [25] PSYCHOLOGICAL CORRELATES OF HORMONE RECEPTOR STATUS IN BREAST-CANCER
    RAMIREZ, AJ
    RICHARDS, MA
    GREGORY, W
    CRAIG, TKJ
    LANCET, 1990, 335 (8702): : 1408 - 1408
  • [26] Menstrual cycle and hormone receptor status in breast cancer patients
    Atalay, C
    Kanliöz, M
    Altinok, M
    NEOPLASMA, 2002, 49 (04) : 278 - 282
  • [27] Socioeconomic status and incidence of breast cancer by hormone receptor subtype
    Akinyemiju, Tomi F.
    Pisu, Maria
    Waterbor, John W.
    Altekruse, Sean F.
    SPRINGERPLUS, 2015, 4
  • [28] Comparison of Hormone Receptor Status in Primary and Recurrent Breast Cancer
    Saedi, Hamid Saeedi
    Nasiri, Mohammad-Reza Ghavam
    ShahidSales, Soodabeh
    Taghizadeh, Ali
    Mohammadian, Nama
    IRANIAN JOURNAL OF CANCER PREVENTION, 2012, 5 (02) : 69 - 73
  • [29] SSRI use and breast cancer risk by hormone receptor status
    Coogan, Patricia F.
    Strom, Brian L.
    Rosenberg, Lynn
    BREAST CANCER RESEARCH AND TREATMENT, 2008, 109 (03) : 527 - 531
  • [30] CYTOMORPHOLOGICAL GRADING AND HORMONE RECEPTOR STATUS IN BREAST-CANCER
    SCHENCK, U
    BURGER, G
    JUTTING, U
    EIERMANN, W
    DEUTSCHE MEDIZINISCHE WOCHENSCHRIFT, 1986, 111 (51-52) : 1949 - 1953