Medical image classification using a combination of features from convolutional neural networks

被引:0
|
作者
Marina M. M. Rocha
Gabriel Landini
Joao B. Florindo
机构
[1] University of Campinas,Institute of Mathematics, Statistics and Scientific Computing
[2] University of Birmingham,Oral Pathology Unit, School of Dentistry
来源
关键词
Classifiers ensemble; Texture recognition; Deep convolutional networks; Odontogenic cysts;
D O I
暂无
中图分类号
学科分类号
摘要
Medical image classification is an important and challenging problem, since images are usually complex, variable and the amount of data is relatively constrained. Selecting optimal sets of features and classifiers is a crucial problem in this area. In this paper it is proposed an image classification method, named Hybrid CNN Ensemble (HCNNE), based on the combination of image features extracted by convolutional neural networks (CNN) and local binary patterns (LBP). The features are subsequently used to build an ensemble of multiple classifiers. More specifically, the Euclidean distance between LBP feature vectors of each training class and the confidence of CNN features classified by support vector machines are employed to compose the input of a multilayer perceptron classifier. Finally, these features are also used as input to other classifiers to compose the final voting ensemble. This approach achieved an accuracy similar to those of other state-of-the-art methods in texture classification and showed an improvement of 10% over the previously reported identification of a group of odontogenic oral cyst histological images, at a low computational cost. Three major contributions are presented here: 1) the combination of low and high level features assigning weights based on the confidence of the features for texture recognition; 2) the combination of automatically learned deep features with LBP by a multilayer perceptron based on the feature confidences; 3) state-of-the-art results are obtained in the odontogenic cyst categorization problem.
引用
收藏
页码:19299 / 19322
页数:23
相关论文
共 50 条
  • [21] Malware Binary Image Classification Using Convolutional Neural Networks
    Kiger, John
    Ho, Shen-Shyang
    Heydari, Vahid
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON CYBER WARFARE AND SECURITY (ICCWS 2022), 2022, : 469 - 478
  • [22] Medical Image Analysis using Convolutional Neural Networks: A Review
    Syed Muhammad Anwar
    Muhammad Majid
    Adnan Qayyum
    Muhammad Awais
    Majdi Alnowami
    Muhammad Khurram Khan
    Journal of Medical Systems, 2018, 42
  • [23] Medical Image Analysis using Convolutional Neural Networks: A Review
    Anwar, Syed Muhammad
    Majid, Muhammad
    Qayyum, Adnan
    Awais, Muhammad
    Alnowami, Majdi
    Khan, Muhammad Khurram
    JOURNAL OF MEDICAL SYSTEMS, 2018, 42 (11)
  • [24] Medical Image Classification with Convolutional Neural Network
    Li, Qing
    Cai, Weidong
    Wang, Xiaogang
    Zhou, Yun
    Feng, David Dagan
    Chen, Mei
    2014 13TH INTERNATIONAL CONFERENCE ON CONTROL AUTOMATION ROBOTICS & VISION (ICARCV), 2014, : 844 - 848
  • [25] A new method for image classification and image retrieval using convolutional neural networks
    Giveki, Davar
    Shakarami, Ashkan
    Tarrah, Hadis
    Soltanshahi, Mohammad Ali
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (01):
  • [26] A New Grammar for Creating Convolutional Neural Networks Applied to Medical Image Classification
    da Silva, Cleber A. C. F.
    Miranda, Pericles B. C.
    Cordeiro, Filipe R.
    2021 34TH SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI 2021), 2021, : 97 - 104
  • [27] An Ensemble of Fine-Tuned Convolutional Neural Networks for Medical Image Classification
    Kumar, Ashnil
    Kim, Jinman
    Lyndon, David
    Fulham, Michael
    Feng, Dagan
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2017, 21 (01) : 31 - 40
  • [28] CONVOLUTIONAL NEURAL NETWORKS IN THE TASK OF IMAGE CLASSIFICATION
    Zelenina, Larisa
    Khaimina, Liudmila
    Khaimin, Evgenii
    Khripunov, D.
    Zashikhina, Inga
    MATHEMATICS AND INFORMATICS, 2022, 65 (01): : 19 - 29
  • [29] Convolutional Neural Networks for Document Image Classification
    Kang, Le
    Kumar, Jayant
    Ye, Peng
    Li, Yi
    Doermann, David
    2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 3168 - 3172
  • [30] Convolutional neural networks for hyperspectral image classification
    Yu, Shiqi
    Jia, Sen
    Xu, Chunyan
    NEUROCOMPUTING, 2017, 219 : 88 - 98