Hypercontractivity for Semigroups of Unital Qubit Channels

被引:0
|
作者
Christopher King
机构
[1] Northeastern University,Department of Mathematics
来源
关键词
Quantum Channel; Logarithmic Sobolev Inequality; Complete Positivity; Unitary Invariance; Noisy Quantum Channel;
D O I
暂无
中图分类号
学科分类号
摘要
Hypercontractivity is proved for products of qubit channels that belong to self-adjoint semigroups. The hypercontractive bound gives necessary and sufficient conditions for a product of the form e-t1H1⊗⋯⊗e-tnHn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${e^{-t_1 H_1}\otimes \cdots \otimes e^{- t_n H_n}}$$\end{document} to be a contraction from Lp to Lq, where Lp is the algebra of 2n-dimensional matrices equipped with the normalized Schatten norm, and each generator Hj is a self-adjoint positive semidefinite operator on the algebra of 2-dimensional matrices. As a particular case the result establishes the hypercontractive bound for a product of qubit depolarizing channels.
引用
收藏
页码:285 / 301
页数:16
相关论文
共 50 条
  • [41] Extreme Points and Factorizability for New Classes of Unital Quantum Channels
    Haagerup, Uffe
    Musat, Magdalena
    Ruskai, Mary Beth
    ANNALES HENRI POINCARE, 2021, 22 (10): : 3455 - 3496
  • [42] Optimal log-Sobolev inequality and hypercontractivity for positive semigroups on M2(C)
    Carbone, R
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2004, 7 (03) : 317 - 335
  • [43] Maximal output purity and capacity for asymmetric unital qudit channels
    Datta, N
    Ruskai, MB
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (45): : 9785 - 9802
  • [44] Continuous unital dilations of completely positive semigroups (vol 269, pg 998, 2015)
    Gaebler, David J.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 269 (12) : 4049 - 4050
  • [45] Hypercontractivity and Logarithmic Sobolev Inequality for Non-primitive Quantum Markov Semigroups and Estimation of Decoherence Rates
    Bardet, Ivan
    Rouze, Cambyse
    ANNALES HENRI POINCARE, 2022, 23 (11): : 3839 - 3903
  • [46] Stability of a simple Levi–Civitá functional equation on non-unital commutative semigroups
    JAEYOUNG CHUNG
    HEATHER HUNT
    ALLISON PERKINS
    PRASANNA K SAHOO
    Proceedings - Mathematical Sciences, 2014, 124 : 365 - 381
  • [47] Optimal measurement preserving qubit channels
    Kechrimparis, Spiros
    Bae, Joonwoo
    NEW JOURNAL OF PHYSICS, 2020, 22 (12):
  • [48] A universal set of qubit quantum channels
    Braun, Daniel
    Giraud, Olivier
    Nechita, Ion
    Pellegrini, Clement
    Znidaric, Marko
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (13)
  • [49] Quasi-inversion of qubit channels
    Karimipour, Vahid
    Benatti, Fabio
    Floreanini, Roberto
    PHYSICAL REVIEW A, 2020, 101 (03)
  • [50] Information Theoretic Representations of Qubit Channels
    Tanner Crowder
    Keye Martin
    Foundations of Physics, 2012, 42 : 976 - 983