Complete scalar-flat Kähler metrics on affine algebraic manifolds

被引:0
|
作者
Takahiro Aoi
机构
[1] Osaka University,Department of Mathematics, Graduate School of Science
来源
Mathematische Zeitschrift | 2021年 / 299卷
关键词
Constant scalar curvature Kähler metrics; Complex Monge–Ampère equations; Plurisubharmonic functions; Asymptotically conical geometry; Fredholm operators; Kähler manifolds; 53C25; 32Q15; 53C21;
D O I
暂无
中图分类号
学科分类号
摘要
Let (X,LX)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X,L_{X})$$\end{document} be an n-dimensional polarized manifold. Let D be a smooth hypersurface defined by a holomorphic section of LX\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{X}$$\end{document}. We prove that if D has a constant positive scalar curvature Kähler metric, X\D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X {\setminus } D$$\end{document} admits a complete scalar-flat Kähler metric, under the following three conditions: (i) n≥6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 6$$\end{document} and there is no nonzero holomorphic vector field on X vanishing on D, (ii) the average of a scalar curvature on D denoted by S^D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat{S}}_{D}$$\end{document} satisfies the inequality 0<3S^D<n(n-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0< 3 {\hat{S}}_{D} < n(n-1)$$\end{document}, (iii) there are positive integers l(>n),m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l(>n),m$$\end{document} such that the line bundle KX-l⊗LXm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{X}^{-l} \otimes L_{X}^{m}$$\end{document} is very ample and the ratio m/l is sufficiently small.
引用
收藏
页码:299 / 355
页数:56
相关论文
共 50 条
  • [31] Flat nearly Kähler manifolds
    Vicente Cortés
    Lars Schäfer
    Annals of Global Analysis and Geometry, 2007, 32 : 379 - 389
  • [32] RC-positivity and scalar-flat metrics on ruled surfaces
    Wang, Jun
    Yang, Xiaokui
    MATHEMATISCHE ZEITSCHRIFT, 2022, 301 (01) : 917 - 934
  • [33] Uniqueness among scalar-flat Kahler metrics on non-compact toric 4-manifolds
    Sena-Dias, Rosa
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2021, 103 (02): : 372 - 397
  • [34] Compactness of scalar-flat conformal metrics on low-dimensional manifolds with constant mean curvature on boundary
    Kim, Seunghyeok
    Musso, Monica
    Wei, Juncheng
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2021, 38 (06): : 1763 - 1793
  • [35] Scalar-flat Kahler metrics with conformal Bianchi V symmetry
    Dunajski, Maciej
    Plansangkate, Prim
    CLASSICAL AND QUANTUM GRAVITY, 2011, 28 (12)
  • [36] Curvature of scalar-flat Kahler metrics on non-compact symplectic toric 4-manifolds
    Sena-Dias, Rosa
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2014, 33 : 149 - 182
  • [37] A Cubic Form Differential Inequality with Applications to Affine Kähler–Ricci Flat Manifolds
    An-Min Li
    Ruiwei Xu
    Results in Mathematics, 2009, 54 : 329 - 340
  • [38] RC-positivity and scalar-flat metrics on ruled surfaces
    Jun Wang
    Xiaokui Yang
    Mathematische Zeitschrift, 2022, 301 : 917 - 934
  • [39] Kähler–Einstein metrics on Fano manifolds
    Gang Tian
    Japanese Journal of Mathematics, 2015, 10 : 1 - 41
  • [40] Extremal Kähler Metrics of Toric Manifolds
    An-Min Li
    Li Sheng
    Chinese Annals of Mathematics, Series B, 2023, 44 : 827 - 836