Complete scalar-flat Kähler metrics on affine algebraic manifolds

被引:0
|
作者
Takahiro Aoi
机构
[1] Osaka University,Department of Mathematics, Graduate School of Science
来源
Mathematische Zeitschrift | 2021年 / 299卷
关键词
Constant scalar curvature Kähler metrics; Complex Monge–Ampère equations; Plurisubharmonic functions; Asymptotically conical geometry; Fredholm operators; Kähler manifolds; 53C25; 32Q15; 53C21;
D O I
暂无
中图分类号
学科分类号
摘要
Let (X,LX)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X,L_{X})$$\end{document} be an n-dimensional polarized manifold. Let D be a smooth hypersurface defined by a holomorphic section of LX\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{X}$$\end{document}. We prove that if D has a constant positive scalar curvature Kähler metric, X\D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X {\setminus } D$$\end{document} admits a complete scalar-flat Kähler metric, under the following three conditions: (i) n≥6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 6$$\end{document} and there is no nonzero holomorphic vector field on X vanishing on D, (ii) the average of a scalar curvature on D denoted by S^D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat{S}}_{D}$$\end{document} satisfies the inequality 0<3S^D<n(n-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0< 3 {\hat{S}}_{D} < n(n-1)$$\end{document}, (iii) there are positive integers l(>n),m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l(>n),m$$\end{document} such that the line bundle KX-l⊗LXm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{X}^{-l} \otimes L_{X}^{m}$$\end{document} is very ample and the ratio m/l is sufficiently small.
引用
收藏
页码:299 / 355
页数:56
相关论文
共 50 条