Robust Feedback Control for a Linear Chain of Oscillators

被引:0
|
作者
Alexander Ovseevich
Igor Ananievski
机构
[1] Ishlinsky Institute for Problems in Mechanics RAS,
[2] Ipmex RAS,undefined
关键词
Feedback control; Linear oscillator; Finite-time stabilization; Robustness; Orthogonal polynomials; 49N05; 49N30; 49K99; 93D15;
D O I
暂无
中图分类号
学科分类号
摘要
We study the problem of bringing a linear chain of masses connected by springs to an equilibrium in finite time by means of a control force applied to the first mass. We describe explicitly the desired feedback control and establish its local equivalence to the minimum-time one. We prove the robustness of the control with respect to unknown disturbances and compute the time of transfer as well as its asymptotic estimate with respect to the length of the chain.
引用
收藏
页码:307 / 316
页数:9
相关论文
共 50 条
  • [31] Output feedback adaptive robust precision motion control of linear motors
    Xu, L
    Yao, B
    AUTOMATICA, 2001, 37 (07) : 1029 - 1039
  • [32] Robust output feedback model predictive control of constrained linear systems
    Mayne, D. Q.
    Rakovic, S. V.
    Findeisen, R.
    Allgoewer, F.
    AUTOMATICA, 2006, 42 (07) : 1217 - 1222
  • [33] Robust iterative learning control with current feedback for uncertain linear systems
    Korea Advanced Inst of Science and, Technology, Taejon, Korea, Republic of
    Int J Syst Sci, 1 (39-47):
  • [34] POINCARE CYCLES OF THE LINEAR-CHAIN OF OSCILLATORS
    VIGFUSSON, JO
    PHYSICA A, 1979, 98 (1-2): : 215 - 230
  • [35] Controlling coherence of noisy and chaotic oscillators by a linear feedback
    Tukhlina, Natalia
    Rosenblum, Michael
    Pikovsky, Arkady
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (24) : 6045 - 6056
  • [36] Global chaos synchronization of the parametrically excited Duffing oscillators by linear state error feedback control
    Wu, Xiaofeng
    Cai, Jianping
    Wang, Muhong
    CHAOS SOLITONS & FRACTALS, 2008, 36 (01) : 121 - 128
  • [37] Robust Output Regulation by State Feedback Control for Coupled Linear Parabolic PIDEs
    Deutscher, Joachim
    Kerschbaum, Simon
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (05) : 2207 - 2214
  • [38] Robust quantized feedback stabilization of linear systems based on sliding mode control
    Zheng, Bo-Chao
    Yang, Guang-Hong
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2013, 34 (04): : 458 - 471
  • [39] Feedback Linearization Based Robust Control for Linear Permanent Magnet Synchronous Motors
    Chen, Yung-Te
    Yu, Chi-Shan
    Chen, Ping-Nan
    ENERGIES, 2020, 13 (20)
  • [40] ROBUST-CONTROL OF ROBOTS VIA LINEAR ESTIMATED STATE-FEEDBACK
    BERGHUIS, H
    NIJMEIJER, H
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1994, 39 (10) : 2159 - 2162