Based on the basic principles of kinetics and some reasonable assumptions about the electrodeposition process, a dynamic model for metal selenide electrodeposition (kink site selected model) was constructed. This model is of universal significance in realizing the compositional prediction and dynamic behavior analysis of deposited films for different main salt concentration ratios and was applied to the ternary Cu–In–Se system. For CuInSe2 electrodeposition, in the Cu–Se system, the co-deposition of Cu and Se can be carried out within a large range of main salt concentration ratio; in the Cu–In system, the mole fraction of Cu in deposited thin films is always higher than that of Cu2+ in electrolyte, while in the In–Se system, the co-deposition of In and Se can be achieved only when the In3+ concentration is much higher than the H2SeO3 concentration. As for the compositional estimation of CuInSe2, the predictive results of our dynamic model agree well with the experimental data. It is then found that by correcting the difference of kink site selectivity constants caused by the change of deposition potential, the error of the predictive results can be reduced.